Skip to main content
Log in

Residual stress behavior and physical properties of transparent polyimide/surface-modified CaCO3 nanocomposite films

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of polyimide (PI) nanocomposite films with various surface-modified colloidal calcium carbonate (SCaCO3) contents were prepared and their physical properties were investigated to understand their possible use as polymer substrates. The morphology, thermal stability, residual stress behavior, moisture barrier and optical properties of nanocomposite films were investigated as a function of the SCaCO3 content and were found to be strongly dependent upon the chemical and morphological structures. With the addition of up to 0.5 wt% SCaCO3 in the PI matrix, resultant nanocomposite films exhibit not only enhanced thermal properties, but also minimized residual stress and excellent optical properties, simultaneously. With increasing SCaCO3 content, the water vapor transmission rate (WVTR) is greatly decreased from 630.76 to 484.22 g/m2/day. The residual stress was in the range of 26.0 to 12.1 MPa and is highly dependent on both temperature variation and SCaCO3 content. Although the residual stress becomes lower at 0.5 wt% SCaCO3 content, it increases at relatively high SCaCO3 loadings due to inadequate dispersion of the SCaCO3 and low interfacial interactions between the polymer and filler surfaces. Therefore, further studies are needed to maximize the performance of nanocomposite films by enhancing the compatibility of the polymer matrix and fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.-H. Tseng, Y.-F. Liao, J.-C. Chiang, and M.-H. Tsai, Mater. Chem. Phys., 136, 247 (2012).

    Article  CAS  Google Scholar 

  2. M.K. Kovalev, F. Kalinina, D. A. Androsov, and C. Cho, Polymer, 54, 127 (2013).

    Article  CAS  Google Scholar 

  3. G.-S. Liou, Y. I.-L. Yang, and Y. O. Su, J. Polym. Sci. Part A: Polym. Chem., 44, 2587 (2006).

    Article  CAS  Google Scholar 

  4. L. Cheng and X. G. Jian, J. Appl. Polym. Sci., 92, 1516 (2004).

    Article  CAS  Google Scholar 

  5. D. -J. Liaw, P.-N. Hsu, W.-H. Chen, and B.-Y. Liaw, Macromol. Chem. Phys., 202, 1483 (2001).

    Article  CAS  Google Scholar 

  6. D. -J. Liaw, B.-Y. Liaw, P.-N. Hsu, and C.-Y. Hwang, Chem. Mater., 13, 1811 (2011).

    Article  Google Scholar 

  7. D. -J. Liaw, C.-Y. Hsu, and B.-Y. Liaw, Polymer, 42, 7993 (2001).

    Article  CAS  Google Scholar 

  8. B. Y. Myung, C. J. Ahn, and T. H. Yoon, Polymer, 45, 3185 (2004).

    Article  CAS  Google Scholar 

  9. T. -H. Lee, J. H. Kim, and B.-S. Bae, J. Mater. Chem., 16, 1657 (2006).

    Article  CAS  Google Scholar 

  10. A. Morikawa, Y. Iyoku, M.-A. Kakimoto, and Y. Imai, J. Mater. Chem., 2, 679 (1992).

    Article  CAS  Google Scholar 

  11. J. L. Hedrick, H.-J., Cha, R. D. Miller, D. Y. Yoon, H. R. Brown, and S. Srinivasan, Macromolecules, 30, 512 (1997).

    Google Scholar 

  12. K. U. Jeong, J.-J. Kim, and T.-H. Yoon, Polymer, 42, 6019 (2001).

    Article  CAS  Google Scholar 

  13. D. -J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Prog. Polym. Sci., 37, 907 (2012).

    Article  CAS  Google Scholar 

  14. W. Oh, T. J. Shin, M. Ree, M. Y. Jin, and K. Char, Macromol. Chem. Phys., 203, 801 (2002).

    Article  CAS  Google Scholar 

  15. M. Ree, T. J. Shin, Y.-H. Park, S. I. Kim, S. H. Woo, C. K. Cho, and C. E. Park, J. Polym. Sci. Part B: Polym. Phys., 36, 1261 (1998).

    Article  CAS  Google Scholar 

  16. Z. Zhang, C. Wang, Y. Meng, and K. Mai, Compos. Part AAppl Sci. Manuf., 43, 189 (2012).

    Article  Google Scholar 

  17. L. Jiang, J. Zhang, and M. P. Wolcott, Polymer, 48, 7632 (2007).

    Article  CAS  Google Scholar 

  18. L. Zhao, J. Feng, and Z. Wang, Sci. China Chem., 52, 924 (2009).

    Article  CAS  Google Scholar 

  19. G.-S. Gai, Y.-F. Yang, S.-M. Fan, and Z.-F. Cai, Powder Technol., 153, 153 (2005).

    Article  CAS  Google Scholar 

  20. D. Kim, K. Jeon, J. Seo, K. Seo, H. Han, and S. Khan, Prog. Org. Coat., 74, 435 (2012).

    Article  CAS  Google Scholar 

  21. W. Jang, J. Seo, C. Lee, S.-H. Paek, and H. Han, J. Appl. Polym. Sci., 113, 976 (2009).

    Article  CAS  Google Scholar 

  22. J. J. Wortman and R. A. Evans, J. Appl. Phys., 36, 153 (1965).

    Article  CAS  Google Scholar 

  23. A. Chatterjee and S. Mishra, Particuology, 11, 760 (2013).

    Article  CAS  Google Scholar 

  24. F. Morel, V. Bounor-Legare, E. Espuche, O. Persyn, and M. Lacroix, Eur. Polym. J., 48, 919 (2012).

    Article  CAS  Google Scholar 

  25. E. Hamciuc, C. Hamciuc, and M. Olariu, Polym Eng. Sci., 50, 520 (2010).

    Article  CAS  Google Scholar 

  26. Y. Wang, J. Shi, L. Han, and F. Xiang, Mater. Sci. Eng. A: Struct. Mater., 501, 220 (2009).

    Article  Google Scholar 

  27. J. Seo, G. Jeon, E. S. Jang, S. Bahadar Khan, and H. Han, J. Appl. Polym. Sci., 122, 1101 (2011).

    Article  CAS  Google Scholar 

  28. G. Hu, Y. Ma, and B. Wang, Mater. Sci. Eng. A: Struct. Mater., 504, 8 (2009).

    Article  Google Scholar 

  29. C. -L. Yin, Z.-Y. Liu, W. Yang, J.-M. Feng, and M.-B. Yang, Polym. Plast. Technol. Eng., 48, 788 (2009).

    Article  CAS  Google Scholar 

  30. H. U. Zaman, P. D. Hun, R. A. Khan, and K.-B. Yoon, J. Thermoplast. Compos. Mater., 26, 1057 (2013).

    Article  Google Scholar 

  31. L. Zha and Z. Fang, Polym. Composite., 31, 1258 (2010).

    CAS  Google Scholar 

  32. F. Bao and W. Shi, Prog. Org. Coat., 68, 334 (2010).

    Article  CAS  Google Scholar 

  33. M. Edrissi and R. Norouzbeigi, J. Mater. Sci. Mater. Electron., 22, 328 (2011).

    Article  CAS  Google Scholar 

  34. W. Jang, H.-S. Lee, S. Lee, S. Choi, D. Shin, and H. Han, Mater. Chem. Phys., 104, 342 (2007).

    Article  CAS  Google Scholar 

  35. W. Jang, D. Shin, S. Choi, S. Park, and H. Han, Polymer, 48, 2130 (2007).

    Article  CAS  Google Scholar 

  36. C. Wang, Y. Sheng, X. Zhao, Y. Pan, Hari-Bala, and Z. Wang, Mater. Lett., 60, 854 (2006).

    Article  CAS  Google Scholar 

  37. Z. Zhou, H. Deng, J. Yi, and S. Liu, Mater. Res. Bull., 34, 1563 (1999).

    Article  CAS  Google Scholar 

  38. C. Bao, Y. Guo, L. Song, and Y. Hu, J. Mater. Chem., 21, 13924 (2011).

    Google Scholar 

  39. H. Kwon, D. Kim, J. Seo, and H. Han, Macromol. Res., 21, 987 (2013).

    Article  CAS  Google Scholar 

  40. M. Avella, S. Cosco, M.L. Di Lorenzo, E. Di Pace, and M. E. Errico, J. Therm. Anal. Calorim., 80, 131 (2005).

    Article  CAS  Google Scholar 

  41. D. Kim, M. Jang, J. Seo, K.-H. Nam, H. Han, and S. B. Khan, Compos. Sci. Technol., 75, 84 (2013).

    Article  CAS  Google Scholar 

  42. Y. Kim, J.-H. Chang, and J.-C. Kim, Macromol. Res., 20, 1257 (2012).

    Article  CAS  Google Scholar 

  43. M. Koo, J.-S. Bae, S. E. Shim, D. Kim, D.-G. Nam, J.-W. Lee, G.-W. Lee, J. H. Yeum, and W. Oh, Colloid Polym. Sci., 289, 1503 (2011).

    Article  CAS  Google Scholar 

  44. A. Zeng, Y. Zheng, Y. Guo, S. Qiu, and L. Cheng, Mater. Des., 34, 691 (2012).

    Article  CAS  Google Scholar 

  45. J. Seo and H. Han, Polym. Degrad. Stab., 77, 477 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haksoo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, KH., Seo, J., Seo, K. et al. Residual stress behavior and physical properties of transparent polyimide/surface-modified CaCO3 nanocomposite films. Macromol. Res. 22, 669–677 (2014). https://doi.org/10.1007/s13233-014-2100-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2100-3

Keywords

Navigation