Advertisement

Macromolecular Research

, Volume 22, Issue 5, pp 562–568 | Cite as

Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning

  • Shamshad Ali
  • Zeeshan Khatri
  • Kyung Wha Oh
  • Ick-Soo KimEmail author
  • Seong Hun KimEmail author
Article

Abstract

A series of poly(ɛ-caprolactone) (PCL)/cellulose acetate (CA) ultrafine fiber webs were prepared via electrospinning followed by deacetylation in an aqueous alkaline solution to convert CA into cellulose (CEL). The wetting properties of PCL/CA and PCL/CEL blends were evaluated to investigate wicking behavior. The results showed that the conversion of PCL/CA into PCL/CEL leads to an improved wettability. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) study revealed that CA was completely converted into CEL after deacetylation, and PCL/CEL blends exhibited characteristics peaks of both constituent fibers. The differential scanning calorimetry (DSC) analysis demonstrated that the PCL/CA ultrafine fibers were partially miscible in PCL/CA ultrafine fibers. The fiber morphology under field emission scanning electron microscopy (FE-SEM) showed that the electrospun ultrafine fibers were bead free. The crystallinity of PCL-CEL, (1:4) blend was greatly decreased in comparison to the treated PCL as revealed by wide angle X-ray diffraction (WAXD) measurements. The potential applications of PCL/CEL webs include liquid biofilters, biosensor and biomedical materials.

Keywords

poly(ɛ-caprolactone) cellulose acetate cellulose electrospinning wettability ultrafine fibers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H.-G. Jeong, Y.-E. Kim, and Y.-J. Kim, Macromol. Res., 21, 1233 (2013).CrossRefGoogle Scholar
  2. (2).
    H. Wang, Y. Feng, Z. Fang, R. Xiao, W. Yuan, and M. Khan, Macromol. Res., 21, 860 (2013).CrossRefGoogle Scholar
  3. (3).
    D. Li, M. W. Frey, and A. J. Baeumner, J. Membr. Sci., 279, 354 (2006).CrossRefGoogle Scholar
  4. (4).
    J. Wu and F. Yin, J. Electroanal. Chem., 694, 1 (2013).CrossRefGoogle Scholar
  5. (5).
    S. Kim, D. Yang, H. Chun, G. Chae, J. Jang, and Y. Shim, Macromol. Res., 21, 931 (2013).CrossRefGoogle Scholar
  6. (6).
    F. C. Bragança and D. S. Rosa, Polym. Adv. Technol., 14, 669 (2003).CrossRefGoogle Scholar
  7. (7).
    J. Han, C. J. Branford-White, and L.-M. Zhu, Carbohydr. Polym., 79, 214 (2010).CrossRefGoogle Scholar
  8. (8).
    Y. Xu, C. Wang, N. M. Stark, Z. Cai, and F. Chu, Carbohydr. Polym., 88, 422 (2012).CrossRefGoogle Scholar
  9. (9).
    S. Hong and G. Kim, Carbohydr. Polym., 83 940 (2011).CrossRefGoogle Scholar
  10. (10).
    N. R. Eldred, J. V. Koleske, and G. V. Olhoft, Compositions of Nitrocellulose and Cyclic Ester Polymers, US Patents 3,642,507, 1972.Google Scholar
  11. (11).
    Y. Nishio, K. Matsuda, Y. Miyashita, N. Kimura, and H. Suzuki, Cellulose, 4, 131 (1997).CrossRefGoogle Scholar
  12. (12).
    R. Kusumi, Y. Inoue, M. Shirakawa, Y. Miyashita, and Y. Nishio, Cellulose, 15, 1 (2008).CrossRefGoogle Scholar
  13. (13).
    D. S. Hubbell and S.L. Cooper, J. Appl. Polym. Sci., 21 3035 (1977).CrossRefGoogle Scholar
  14. (14).
    H. Hatakeyama, T. Yoshida, and T. Hatakeyama, J. Therm. Anal. Calorim., 59, 157 (2000).CrossRefGoogle Scholar
  15. (15).
    D. S. Rosa, C. G. F. Guedes, and M. A. G. Bardi, Polym. Test., 26, 209 (2007).CrossRefGoogle Scholar
  16. (16).
    X. Zhou and Y. Huang, J. Appl. Polym. Sci., 93, 550 (2004).CrossRefGoogle Scholar
  17. (17).
    A. Yang, R. Wu, and P. Zhu, J. Appl. Polym. Sci., 81, 3117 (2001).CrossRefGoogle Scholar
  18. (18).
    K. T. Shalumon, K. H. Anulekha, C. M. Girish, R. Prasanth, S. V. Nair, and R. Jayakumar, Carbohydr. Polym., 80, 413 (2010).CrossRefGoogle Scholar
  19. (19).
    F. Gassner and A. J. Owen, Polymer, 35, 2233 (1994).CrossRefGoogle Scholar
  20. (20).
    J. Suave, E. C. Dall’Agnol, A. P. T. Pezzin, M. M. Meier, and D. A. K. Silva, J. Appl. Polym. Sci., 117, 3419 (2010).Google Scholar
  21. (21).
    X. Wang, Y.-G. Kim, C. Drew, B.-C. Ku, J. Kumar, and L. A. Samuelson, Nano Lett., 4 331 (2004).CrossRefGoogle Scholar
  22. (22).
    L. Shuiping, T. Lianjiang, H. Weili, L. Xiaoqiang, and C. Yanmo, Mater. Lett., 64, 2427 (2010).CrossRefGoogle Scholar
  23. (23).
    G. Callegari, I. Tyomkin, K. G. Kornev, A. V. Neimark, and Y.-L. Hsieh, J. Colloid Interface Sci., 353, 290 (2011).CrossRefGoogle Scholar
  24. (24).
    H. Liu and Y.-L. Hsieh, J. Polym. Sci. Part B: Polym. Phys., 40, 2119 (2002).CrossRefGoogle Scholar
  25. (25).
    Z. Khatri, K. Wei, B.-S. Kim, and I.-S. Kim, Carbohydr. Polym., 87, 2183 (2012).CrossRefGoogle Scholar
  26. (26).
    Z. Khatri, G. Mayakrishnan, Y. Hirata, K. Wei, and I.-S. Kim, Carbohydr. Polym., 91, 434 (2013).CrossRefGoogle Scholar
  27. (27).
    L. Van der Schueren, T. De Meyer, I. Steyaert, Ö. Ceylan, K. Hemelsoet, V. Van Speybroeck, and K. De Clerck, Carbohydr. Polym., 91, 284 (2013).CrossRefGoogle Scholar
  28. (28).
    D. S. Rosa, C. G. F. Guedes, F. Casarin, and F. C. Bragança, Polym. Test., 24, 542 (2005).CrossRefGoogle Scholar
  29. (29).
    W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, J. Polym. Sci. Part B: Polym. Phys., 42, 5 (2004).CrossRefGoogle Scholar
  30. (30).
    M. Vallejos, M. Peresin, and O. Rojas, J. Polym. Environ., 20, 1075 (2012).CrossRefGoogle Scholar
  31. (31).
    S. Peng, X. Wang, and L. Dong, Polym. Compos., 26, 37 (2005).CrossRefGoogle Scholar
  32. (32).
    T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid Interface Sci., 273, 381 (2004).CrossRefGoogle Scholar
  33. (33).
    L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Mater. Sci. Eng. C, 30, 1129 (2010).CrossRefGoogle Scholar
  34. (34).
    Z. Khatri, R. Nakashima, G. Mayakrishnan, K.-H. Lee, Y.-H. Park, K. Wei, and I.-S. Kim, J. Mater. Sci., 48, 3659 (2013).CrossRefGoogle Scholar
  35. (35).
    Y. Luo, S. Wang, M. Shen, R. Qi, Y. Fang, R. Guo, H. Cai, X. Cao, H. Tomás, M. Zhu, and X. Shi, Carbohydr. Polym., 91, 419 (2013).CrossRefGoogle Scholar
  36. (36).
    H. Zheng, S. Zheng, and Q. Guo, J. Polym. Sci. Part A: Polym. Chem., 35, 3161 (1997).CrossRefGoogle Scholar
  37. (37).
    H. Zheng, S. Zheng, and Q. Guo, J. Polym. Sci. Polym. Chem., 35, 3169 (1997).CrossRefGoogle Scholar
  38. (38).
    Z. Zhong and Q. Guo, Polymer, 39 517 (1998).CrossRefGoogle Scholar
  39. (39).
    R. Xiong, N. Hameed, and Q. Guo, Carbohydr. Polym., 90, 575 (2012).CrossRefGoogle Scholar
  40. (40).
    Z. Ma, M. Kotaki, and S. Ramakrishna, J. Membr. Sci., 265, 115 (2005).CrossRefGoogle Scholar
  41. (41).
    R. A. Arain, Z. Khatri, M. H. Memon, and I.-S. Kim, Carbohydr. Polym., 96, 326 (2013).CrossRefGoogle Scholar
  42. (42).
    Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, Mater. Sci. Eng. C, 30, 1014 (2010).CrossRefGoogle Scholar
  43. (43).
    Z. Khatri, R. Arain, A. Jatoi, G. Mayakrishnan, K. Wei, and I.-S. Kim, Cellulose, 20, 1469 (2013).CrossRefGoogle Scholar
  44. (44).
    Y. Ahn, D.-H. Hu, J. H. Hong, S. H. Lee, H. J. Kim, and H. Kim, Carbohydr. Polym., 89, 340 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Textile EngineeringMehran University of Engineering and TechnologyJamshoroPakistan
  3. 3.Nano Fusion Technology Research Group, Faculty of Textile Science and TechnologyShinshu UniversityNaganoJapan
  4. 4.Department of Fashion DesignChung-Ang UniversityGyeonggiKorea

Personalised recommendations