Skip to main content
Log in

Effect of monomer composition on structural properties of poly(ethylene-co-propylene) nanofiber by Monte Carlo simulation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Structural properties at the bond and molecular level of poly(ethylene-co-atactic propylene) copolymer nanofiber were studied by lattice Monte Carlo simulation. The simulation was performed with a coarse-grained model of these random copolymer chains with the density in the range of 0.753–0.760 g/cm3 at 473 K. The properties of nanofiber were characterized at different monomer fraction. When the ethylene fraction was increased, the relative bead density of nanofibers was increased in the bulk region near the fiber (X) axis and dramatically decreased in the region toward the surface along the radial direction. The interfacial widths of these radial bead density profiles were increased for copolymer with higher ethylene content. End beads of polymer chains became more abundant in the region closer to the vacuum side and the bonds near the surface were more oriented in a parallel direction to the surface with an increase of ethylene content. Molecular size as represented by the radius of gyration (R g ) in the X-component became smaller along the radical direction, while the R g in the Y-Z component was relatively unchanged. There were significant changes in molecular shape (acylindricity) and the size of copolymer (components of the radius of gyration) as a function of ethylene content. Similarly, the largest molecular axis was oriented in a parallel direction to the fiber axis, and changed toward random orientation when the ethylene content was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems, M. D. Dadmun, W. A. Van Hook, D. W. Noid, Y. B. Melnichenko, and R. G. Sumpter, Eds., Kluwer Academic/Plenum Publisher, New York, 2001.

    Google Scholar 

  2. A. L. Andrady, Science and Technology of Polymer Nanofibers, John Wiley & Sons, New Jersy, 2008.

    Book  Google Scholar 

  3. R. S. Barhate and S. Ramakrishna, J. Membr. Sci., 296, 1 (2007).

    Article  CAS  Google Scholar 

  4. A. Martins, J. V. Araujo, R. L. Reis, and N. M. Neves, Nanomedicine, 2, 929 (2007).

    Article  Google Scholar 

  5. D. Liang, B. Hsiao, and B. Chu, Adv. Drug Deliv. Rev., 59, 1392 (2007).

    Article  CAS  Google Scholar 

  6. L. Y. Yeo and J. R. Friend, J. Exp. Nanosci., 1, 177 (2006).

    Article  CAS  Google Scholar 

  7. C. Burger, B. Hsiao, and B. Chu, Ann. Rev. Mater. Res., 36, 333 (2006).

    Article  CAS  Google Scholar 

  8. S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, Nat. Nanotechnol., 5, 251 (2010).

    Article  CAS  Google Scholar 

  9. K. Watanabe, B. S. Kim, and I. S. Kim, Polym. Rev., 51, 288 (2011).

    Article  CAS  Google Scholar 

  10. W. G. Madden, J. Chem. Phys., 87, 1405 (1987).

    Article  CAS  Google Scholar 

  11. D. N. Theodorou, Macromolecules, 21, 1391 (1988).

    Article  CAS  Google Scholar 

  12. P. Doruker and W. L. Mattice, Macromolecules, 31, 1418 (1998).

    Article  CAS  Google Scholar 

  13. M. Müller and L. G. MacDowell, Macromolecules, 33, 3902 (2000).

    Article  Google Scholar 

  14. K. F. Mansfield and D. N. Theodorou, Macromolecules, 23, 4430 (1990).

    Article  CAS  Google Scholar 

  15. K. F. Mansfield and D. N. Theodorou, Macromolecules, 24, 6283 (1991).

    Article  CAS  Google Scholar 

  16. P. Doruker and W. L. Mattice, Macromolecules, 32, 194 (1998).

    Article  Google Scholar 

  17. S. Buell, G. C. Rutledge, and K. J. Van Vliet, ACS Appl. Mater. Interfaces, 2, 1164 (2010).

    Article  CAS  Google Scholar 

  18. S. Curgul, K. J. Van Vliet, and G. C. Rutledge, Macromolecules, 40, 8483 (2007).

    Article  CAS  Google Scholar 

  19. V. Vao-soongnern, P. Doruker, and W. L. Mattice, Macromol. Theory Simul., 9, 1 (2000).

    Article  CAS  Google Scholar 

  20. V. Vao-soongnern and W. L. Mattice, Macromol. Theory Simul., 9, 570 (2000).

    Article  CAS  Google Scholar 

  21. V. Vao-soongnern and W. L. Mattice, Langmuir, 16, 6757 (2000).

    Article  CAS  Google Scholar 

  22. F. Garbassi, M. Morra, and E. Occhiello, Polymer Surfaces: From Physics to Technology, Wiley, New York, 2002.

    Google Scholar 

  23. S. S. Rane, W. L. Mattice, and A. Dhinojwala, J. Phys. Chem. B, 108, 14830 (2004).

    Article  CAS  Google Scholar 

  24. A. Opdahl, R. A. Phillips, and G. A. Somorjai, J. Phys. Chem. B, 106, 5212 (2002).

    Article  CAS  Google Scholar 

  25. T. Pinijmontree, P. K. Choi, and V. Vao-soongnern, Macromol. Res., 22, 187 (2014).

    Article  CAS  Google Scholar 

  26. R. A. Orwoll, in Physical Properties of Polymers Handbook, J. E. Mark, Ed., American Institute of Physics, Woodbury, New York, 1996, p 81.

  27. A. Abe, R. L. Jernigan, and P. J. Flory, J. Am. Chem. Soc., 88, 631 (1966).

    Article  CAS  Google Scholar 

  28. U. W. Suter, S. Pucci, and P. Pino, J. Am. Chem. Soc., 97, 1018 (1975).

    Article  CAS  Google Scholar 

  29. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys., 21, 1087 (1953).

    Article  CAS  Google Scholar 

  30. J. Cho and W. L. Mattice, Macromolecules, 30, 637 (1997).

    Article  CAS  Google Scholar 

  31. T. C. Clancy and W. L. Mattice, J. Chem. Phys., 115, 8221 (2001).

    Article  CAS  Google Scholar 

  32. V. Vao-soongnern, P. Doruker, and W. L. Mattice, in Simulations of thin films and fibers of amorphous polymers in Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems, M. D. Dadmun, W. A. Van Hook, D. W. Noid, Y. B. Melnichenko, and B. G. Sumpter, Eds., Kluwer Academic/Plenum Publishers, New York, 2001, pp 117–126.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visit Vao-soongnern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vao-soongnern, V. Effect of monomer composition on structural properties of poly(ethylene-co-propylene) nanofiber by Monte Carlo simulation. Macromol. Res. 22, 474–480 (2014). https://doi.org/10.1007/s13233-014-2070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2070-5

Keywords

Navigation