Macromolecular Research

, Volume 22, Issue 5, pp 528–533 | Cite as

High-speed fabrication of thermoplastic carbon fiber fabric composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix for automotive applications



A weight savings of approximately 30% of the total weight of an automobile can be achieved if high-speed mass production of the continuous carbon fabric reinforced composites (CCFRCs) is possible. In this study, we analyzed the high-speed production of thermoplastic CCFRCs with a 2 min processing time using a polymerizable, low-viscosity thermoplastic cyclic butylene terephthalate (CBT) resin. Along with the reduced processing time, superior mechanical properties were obtained in the CCFRC specimen, such as a tensile strength of 440 MPa and an impact strength of 44 KJ m−2. This could be achieved because a high carbon fiber content of 70% volume could be reached with few pores or defects in the CCFRC. The proposed high-speed production of the thermoplastic CCFRC can compete with metal pressing due to its short processing time of only a few minutes, which is the time limit currently accepted by the automotive industry.


carbon fabric composites cyclic butylene terephthalate high-speed fabrication thermoplastics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. Kamiura, Carbon Fiber Composite Materials, 3rd IT-2010 Strategy Seminar, Tokyo, 2008.Google Scholar
  2. (2).
    S. Y. Kim, S. J. Baek, and J. R. Youn, Carbon, 49, 5329 (2011).CrossRefGoogle Scholar
  3. (3).
    D. C. Davis, J. W. Wilkerson, J. Zhu, and V. G. Hadjiev, Compos. Sci. Technol., 71, 1089 (2011).CrossRefGoogle Scholar
  4. (4).
    Q. An, A. N. Rider, and E. T. Thostenson, Carbon, 50, 4130 (2012).CrossRefGoogle Scholar
  5. (5).
    M. Li, S.-K. Wang, Y.-Z. Gu, Y.-X. Li, K. Potter, and Z.-G. Zhang, Compos. Sci. Technol., 72, 873 (2012).CrossRefGoogle Scholar
  6. (6).
    G. -W. Lee, S.-S. Lee, M. Park, J. Kim, and S. Lim, Macromol. Res., 10, 194 (2002).CrossRefGoogle Scholar
  7. (7).
    S. Y. Kim, J. T. Lee, J. Y. Kim, and J. R. Youn, Polym. Eng. Sci., 50, 1205 (2010).CrossRefGoogle Scholar
  8. (8).
    S. Y. Kim, S. H. Lee, S. J. Baek, and J. R. Youn, Macromol. Mater. Eng., 293, 969 (2008).CrossRefGoogle Scholar
  9. (9).
    Y. H. Kim, D. H. Kim, J. M. Kim, S. H. Kim, and W. N. Kim, Macromol. Res., 17, 110 (2009).CrossRefGoogle Scholar
  10. (10).
    S. Cho, S. Kim, M. Cho, Y. Lee, D. Kim, and W. Kim, Macromol. Res., 17, 1021 (2009).CrossRefGoogle Scholar
  11. (11).
    L. Mészáros, T. Deák, G. Balogh, T. Czvikovszky, and T. Czigány, Compos. Sci. Technol., 75, 22 (2013).CrossRefGoogle Scholar
  12. (12).
    S. Pillay, U. K. Vaidya, and G. M. Janowski, Compos. Sci. Technol., 69, 839 (2009).CrossRefGoogle Scholar
  13. (13).
    P. Fabbri, E. Bassoli, S. B. Bon, and L. Valentini, Polymer, 53, 897 (2012).CrossRefGoogle Scholar
  14. (14).
    G. Romhány, J. Vígh, R. Thomann, J. Karger-Kocsis, and I. E. Sajó, Macromol. Mater. Eng., 296, 544 (2011).CrossRefGoogle Scholar
  15. (15).
    D. Xu, J. Karger-Kocsis, and A. A. Apostolov, Eur. Polym. J., 45, 1270 (2009).CrossRefGoogle Scholar
  16. (16).
    J. Baets, M. Dutoit, J. Devaux, and I. Verpoest, Compos. Part A: Appl. Sci. Manuf., 39, 13 (2008).CrossRefGoogle Scholar
  17. (17).
    H. Parton, J. Baets, P. Lipnik, B. Goderis, J. Devaux, and I. Verpoest, Polymer, 46, 9871 (2005).CrossRefGoogle Scholar
  18. (18).
    H. Parton and I. Verpoest, Polym. Compos., 26, 60 (2005).CrossRefGoogle Scholar
  19. (19).
    T. Yu, C. M. Wu, C. Y. Chang, C. Y. Wang, and S. P. Rwei, Express Polym. Lett., 6, 318 (2012).CrossRefGoogle Scholar
  20. (20).
    Z. A. Mohd Ishak, Y. W. Leong, and M. Steeg, and J. Karger-Kocsis, Compos. Sci. Technol., 67, 390 (2007).CrossRefGoogle Scholar
  21. (21).
    J. Karger-Kocsis, P. P. Shang, Z. A. Mohd Ishak, and M. Rösch, Express Polym. Lett., 1, 60 (2007).CrossRefGoogle Scholar
  22. (22).
    S. Y. Kim, J. Y. Kim, and S. H. Kim, Polym. Int., 57, 378 (2008).CrossRefGoogle Scholar
  23. (23).
    M. Harsch, J. Karger-Kocsis, and A. A. Apostolov, J. Appl. Polym. Sci., 108, 1455 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Carbon Convergence Materials Research Center, Institute of Advanced Composite MaterialsKorea Institute of Science and Technology (KIST)JeonbukKorea
  2. 2.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations