Skip to main content
Log in

Enhanced thermal properties of epoxy composites by using hyperbranched aromatic polyamide grafted silicon carbide whiskers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this report, we demonstrate that the thermal conductivity, glass transition temperature, thermal stability and dynamical mechanical properties of epoxy composites could all be improved by incorporating hyperbranched aromatic polyamide grafted silicon carbide (SiC-HBP) whiskers, using a solution method. The morphology and thermal properties of these newly modified epoxy composites were systematically analyzed and studied. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermal gravimetric analyses (TGA) proved hyperbranched aromatic polyamide grafted SiC whiskers were successfully prepared by solution polymerization. The thermal conductivity of epoxy composite with 30 wt% of SiC-HBP had 2-fold improvement, compared to that of the neat epoxy. Besides, the glass transition temperatures (T g ) and dynamical mechanical properties of the epoxy composites were also raised by the addition of SiC-HBP, which indicates strong interfacial adhesion between SiC-HBP and the epoxy matrix. Most importantly, the incorporation of SiC-HBP in the epoxy matrix could effectively improve the thermal stability of the epoxy composites, according to our thermogravimetric analysis (TGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. K. Herman Teo, C. L. Toh, and X. Lu, Polymer, 52, 1975 (2011).

    Article  CAS  Google Scholar 

  2. M. Kozako, Y. Okazaki, M. Hikita, and T. Tanaka, in Solid Dielectrics (ICSD), 2010 10th IEEE International Conference on, Potsdam, DOI:10.1109/ICSD.2010.5568250 (2010).

    Google Scholar 

  3. W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, Polym. Eng. Sci., 39, 756 (1999).

    Article  CAS  Google Scholar 

  4. C. Y. Hsieh and S. L. Chung, J. Appl. Polym. Sci., 102, 4734 (2006).

    Article  CAS  Google Scholar 

  5. K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, and K. Watari, J. Mater. Chem., 20, 2749 (2010).

    Article  CAS  Google Scholar 

  6. K. Yung and H. Liem, J. Appl. Polym. Sci., 106, 3587 (2007).

    Article  CAS  Google Scholar 

  7. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano, 4, 2979 (2010).

    Article  CAS  Google Scholar 

  8. T. Zhou, X. Wang, G. Mingyuan, and X. Liu, Polymer, 49, 4666 (2008).

    Article  CAS  Google Scholar 

  9. T. Zhou, X. Wang, X. Liu, and D. Xiong, Carbon, 48, 1171 (2010).

    Article  CAS  Google Scholar 

  10. K. Yang and M. Gu, Compos. Part A: Appl. Sci. Manuf., 41, 215 (2010).

    Article  CAS  Google Scholar 

  11. T. Zhou, X. Wang, H. Zhu, and T. Wang, Compos. Part A: Appl. Sci. Manuf., 40, 1792 (2009).

    Article  CAS  Google Scholar 

  12. T. Zhou, M. Gu, Y. Jin, and J. Wang, Polymer, 46, 6174 (2005).

    Article  CAS  Google Scholar 

  13. T. Zhou, M. Gu, Y. Jin, and J. Wang, Polymer, 46, 6216 (2005).

    Article  CAS  Google Scholar 

  14. M. Bhattacharya and A. K. Bhowmick, Polymer, 49, 4808 (2008).

    Article  CAS  Google Scholar 

  15. A. Karul, K. T. Tan, C. C. White, D. L. Hunston, S. T. Marshall, B. Akgun, S. K. Satija, C. L. Soles, and B. D. Vogt, Polymer, 50, 3234 (2009).

    Article  CAS  Google Scholar 

  16. A. Korzhenko, M. Tabellout, and J. R. Emery, Polymer, 40, 7187 (1999).

    Article  CAS  Google Scholar 

  17. Y. Lei, Z. Tang, L. Zhu, B. Guo, and D. Jia, Polymer, 52, 1337 (2011).

    Article  CAS  Google Scholar 

  18. F. Tao, B. Nysten, A.-C. Baudouin, J.-M. Thomassin, D. Vuluga, C. Detrembleur, and C. Bailly, Polymer, 52, 4798 (2011).

    Article  CAS  Google Scholar 

  19. M. Wong, M. Paramsothy, X. J. Xu, Y. Ren, S. Li, and K. Liao, Polymer, 44, 7757 (2003).

    Article  CAS  Google Scholar 

  20. S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, J. Colloid Interface Sci., 329, 300 (2009).

    Article  CAS  Google Scholar 

  21. T. Zhou, J.-W. Zha, R.-Y. Cui, B.-H. Fan, J.-K. Yuan, and Z.-M. Dang, ACS Appl. Mater. Interfaces, 3, 2184 (2011).

    Article  CAS  Google Scholar 

  22. J. Yu, X. Huang, C. Wu, X. Wu, G. Wang, and P. Jiang, Polymer, 53, 471 (2012).

    Article  CAS  Google Scholar 

  23. J. Yu, X. Huang, L. Wang, P. Peng, C. Wu, X. Wu, and P. Jiang, Polym. Chem., 2, 1380 (2011).

    Article  CAS  Google Scholar 

  24. R. Qian, J. Yu, L. Xie, Y. Li, and P. Jiang, Polym. Adv. Technol., 24, 348 (2013).

    Article  CAS  Google Scholar 

  25. T. Coleman and Y. Li, SIAM J. Optim., 6, 418 (1996).

    Article  Google Scholar 

  26. H. Im and J. Kim, J. Mater. Sci., 47, 6025 (2012).

    Article  CAS  Google Scholar 

  27. Y. Hu, J. Shen, N. Li, H. Ma, M. Shi, B. Yan, W. Huang, W. Wang, and M. Ye, Compos. Sci. Technol., 70, 2176 (2010).

    Article  CAS  Google Scholar 

  28. S. S. Al-Juaid, E. H. El-Mossalamy, H. M. Arafa, A. A. Al-Ghamdi, A. M. A. Daiem, and F. El-Tantawy, J. Appl. Polym. Sci., 121, 3604 (2011).

    Article  CAS  Google Scholar 

  29. N. Tagami, M. Hyuga, Y. Ohki, T. Tanaka, T. Imai, M. Harada, and M. Ochi, IEEE Trans. Dielectr. Electr. Insul., 17, 214 (2010).

    Article  CAS  Google Scholar 

  30. S. H. Kim, W. I. Lee, and J. M. Park, Carbon, 47, 2699 (2009).

    Article  CAS  Google Scholar 

  31. N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, J. Mater. Chem., 22, 12709 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhong Yu, Nan Jiang or Shaorong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Yu, J., Rao, B. et al. Enhanced thermal properties of epoxy composites by using hyperbranched aromatic polyamide grafted silicon carbide whiskers. Macromol. Res. 22, 405–411 (2014). https://doi.org/10.1007/s13233-014-2049-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2049-2

Keywords

Navigation