Advertisement

Macromolecular Research

, Volume 22, Issue 1, pp 74–78 | Cite as

Biodegradable blends of stereocomplex polylactide and lignin by supercritical carbon dioxide-solvent system

  • Purba Purnama
  • Soo Hyun Kim
Article

Abstract

The development of biomaterials by utilizing natural resources attracted great interest due to environmental reasons. Lignin as part of biomass can be used as filler in polymer blending. The combination of stereocomplex polylactide and lignin was successfully generated through a supercritical carbon dioxide — solvent system. The solvation power of organic solvent to the polylactide and lignin is the key factor to obtain homogeneous blends. The supercritical carbon dioxide — tetrahydrofuran is the best system to generate stereocomplex polylactide — lignin blends. The thermal degradation property of polylactide based materials was improved by combining stereocomplex polylactide and lignin providing the simultaneous effects from the stereocomplex crystallites structure and the formation of char residue of lignin. The combination of fully bio-based materials is a promising candidate to replace non-degradable materials in the future.

Keywords

polyactide stereocomplex lignin supercritical fluid thermal degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. Green, S. D. Short, E. Stutt, and P. T. C. Harrison, Sci. Total Environ., 256, 205 (2000).CrossRefGoogle Scholar
  2. (2).
    S. H. Imam, R. V. Greene, and B. R. Zaidi, Biopolymers: Utilizing Nature’s Advanced Materials, American Chemical Society, Washington, DC, 1999.CrossRefGoogle Scholar
  3. (3).
    Z. Zhong, P. J. Dijkstra, and J. Feijen, J. Am. Chem. Soc., 125, 11291 (2003).CrossRefGoogle Scholar
  4. (4).
    A. P. Gupta and V. Kumar, Eur. Polym. J., 43, 4053 (2007).CrossRefGoogle Scholar
  5. (5).
    R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).CrossRefGoogle Scholar
  6. (6).
    J. Li, Y. He, and Y. Inoue, Polym. Int., 52, 949 (2003).CrossRefGoogle Scholar
  7. (7).
    W. Ouyang, Y. Huang, H. Luo, and D. Wang, J. Polym. Environ., 20, 1 (2012).CrossRefGoogle Scholar
  8. (8).
    E. Corradini, E. A. G. Pineda, and A. A. W. Hechenleitner, Polym. Degrad. Stab., 66, 199 (1999).CrossRefGoogle Scholar
  9. (9).
    Y. Teramoto, S. H. Lee, and T. Endo, Polym. J., 41, 219 (2009).CrossRefGoogle Scholar
  10. (10).
    Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Macromolecules, 20, 904 (1987).CrossRefGoogle Scholar
  11. (11).
    H. Tsuji, Macromol. Biosci., 5, 569 (2005).CrossRefGoogle Scholar
  12. (12).
    H. Tsuji and Y. Ikada, Macromolecules, 26, 6918 (1993).CrossRefGoogle Scholar
  13. (13).
    H. Yamane and K. Sasai, Polymer, 44, 2569 (2003).CrossRefGoogle Scholar
  14. (14).
    K. Fukushima, Y. H. Chang, and Y. Kimura, Macromol. Biosci., 7, 829 (2007).CrossRefGoogle Scholar
  15. (15).
    H. Tsuji and Y. Ikada, Macromolecules, 25, 5719 (1992).CrossRefGoogle Scholar
  16. (16).
    K. S. Anderson and M. A. Hillmyer, Polymer, 47, 2030 (2006).CrossRefGoogle Scholar
  17. (17).
    P. Purnama and S. H. Kim, Macromolecules, 43, 1137 (2010).CrossRefGoogle Scholar
  18. (18).
    P. Purnama and S. H. Kim, Polym. Int., 61, 939 (2012).CrossRefGoogle Scholar
  19. (19).
    P. Purnama, Y. Jung, and S. H. Kim, Macromolecules, 45, 4012 (2012).CrossRefGoogle Scholar
  20. (20).
    T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994).CrossRefGoogle Scholar
  21. (21).
    P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33, 1047 (1995).CrossRefGoogle Scholar
  22. (22).
    J. M. Brown, D. Curliss, and R. A. Vaia, Chem. Mater., 12, 3376 (2000).CrossRefGoogle Scholar
  23. (23).
    P. Purnama, S. H. Lim, Y. Jung, and S. H. Kim, Macromol. Res., 20, 545 (2012).CrossRefGoogle Scholar
  24. (24).
    P. Purnama, Y. Jung, and S. H. Kim, Macromol. Mater. Eng., 298, 263 (2013).CrossRefGoogle Scholar
  25. (25).
    Y. Sun and C. He, ACS Macro Lett., 1, 709 (2012).CrossRefGoogle Scholar
  26. (26).
    A. Agrawal, A. D. Saran, S. S. Rath, and A. Khanna, Polymer, 45, 8603 (2004).CrossRefGoogle Scholar
  27. (27).
    C. M. Hansen, in Hansen Solubility Parameters — a User’s Handbook, CRC Press, Florida, 2000, pp 168–195.Google Scholar
  28. (28).
    Y. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, and T. Endo, Polym. Degrad. Stab., 86, 197 (2004).CrossRefGoogle Scholar
  29. (29).
    M. Canetti, F. Bertini, A. De Chirico, and G. Audisio, Polym. Degrad. Stab., 91, 494 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Biomaterials Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea

Personalised recommendations