Macromolecular Research

, Volume 21, Issue 11, pp 1218–1225 | Cite as

Preparation of cellulose nanowhiskers and their reinforcing effect in polylactide

Article

Abstract

Cellulose nanowhiskers (CNW) were isolated from microcrystalline cellulose (MCC) using acid hydrolysis and ultrasonication. Polylactide (PLA) composites were prepared by incorporating CNW (0.1 and 0.5 wt%) into a PLA matrix and casting the composite films. To investigate the effects of the CNW as reinforcement in the PLA composites, analyses of rheological properties, thermal stability, thermal behavior, and mechanical properties were performed. In rheological analysis, complex viscosity of the PLA/CNW solutions in CHCl3 was decreased with an increase in frequency and the storage modulus and loss tangent were increased with filler loading. Despite filler loading on the PLA matrix, transmittance was decreased slightly. Thermal stability was decreased with CNW loading. The nanocellulose filler did not affect glass transition or melting temperature; however, it promoted crystallization, resulting in an increase in crystallinity for the PLA composites. The tensile strength and tensile modulus of the PLA composite films increased with a rise of CNW contents. These results suggest that high performance PLA bionanocomposites with high transparency can be obtained by adding uniformly dispersed small amount of the CNW.

Keywords

polylactide polymer nanocomposite cellulose nanowhisker microcrystalline cellulose sulfuric acid treatment solution casting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. Garlotta, J. Polym. Environ., 9, 63 (2001).CrossRefGoogle Scholar
  2. (2).
    A. Sdergård and M. Stolt, Prog. Polym. Sci., 27, 1123 (2002).CrossRefGoogle Scholar
  3. (3).
    P. Sangwan and D.Y. Wu, Macromol. Biosci., 8, 304 (2008).CrossRefGoogle Scholar
  4. (4).
    H. Xu, C. Teng, and M. Yu, Polymer, 46, 3922 (2006).CrossRefGoogle Scholar
  5. (5).
    R. A. Shanks, A. Hodzic, and D. Ridderhof, J. Appl. Polym. Sci., 101, 3620 (2006).CrossRefGoogle Scholar
  6. (6).
    N. Lin, G. Chen, J. Huang, A. Dufresne, and P. R. Chang, J. Appl. Polym. Sci., 113, 3417 (2009).CrossRefGoogle Scholar
  7. (7).
    E. Sykacek, W. Schlager, and N. Mundigler, Polym. Composite., 31, 443 (2010).Google Scholar
  8. (8).
    N. Reddy and Y. Yang, Biotechnol. Bioeng., 97, 1021 (2006).CrossRefGoogle Scholar
  9. (9).
    J. T. Kang and S. H. Kim, Macromol. Res., 19, 789 (2011).CrossRefGoogle Scholar
  10. (10).
    M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, J. Mater. Sci., 40, 4221 (2005).CrossRefGoogle Scholar
  11. (11).
    S. H. Lee, S. Wang, and Y. Teramoto, J. Appl. Polym. Sci. 108, 870 (2008).CrossRefGoogle Scholar
  12. (12).
    A. P. Mathew, K. Okdsman, and M. Sain, J. Appl. Polym. Sci. 97, 2014 (2005).CrossRefGoogle Scholar
  13. (13).
    R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, Carbohydr. Polym., 76, 51 (2009).CrossRefGoogle Scholar
  14. (14).
    A. Šturcová, G. R. Davies, and S. J. Eichhom, Biomacromolecules, 6, 1055 (2005).CrossRefGoogle Scholar
  15. (15).
    X. Cao, H. Dong, and C. M. Li, Biomacromolecules, 8, 899 (2007).CrossRefGoogle Scholar
  16. (16).
    B. M. Cherian, A. L. Leão, S. F. Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, Carbohydr. Polym., 81, 720 (2010).CrossRefGoogle Scholar
  17. (17).
    E. Abraham, B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala, Carbohydr. Polym., 86, 1468 (2011).CrossRefGoogle Scholar
  18. (18).
    J. P. S. Morais, M. F. Rosa. M. M. S. Filho, L. D. Nascimento, D. M. Nascimento, and A. R. Cassales, Carbohydr. Polym., 91, 229 (2013).CrossRefGoogle Scholar
  19. (19).
    M. Martínez-Sanz, A. Lopez-Rubio, and J. M. Lagaron, Carbohydr. Polym., 85, 228 (2011).CrossRefGoogle Scholar
  20. (20).
    M. Jonoobi, J. Harun, A. P. Mathew, and K. Oksman, Compos. Sci. Technol., 70, 1742 (2010).CrossRefGoogle Scholar
  21. (21).
    D. Bondeson and K. Oksman, Compos. Part A: Appl. Sci. Manuf., 38, 2486 (2007).CrossRefGoogle Scholar
  22. (22).
    K. Oksman, A. P. Mathew, D. Bondeson, and I. Kvien, Compos. Sci. Technol., 66, 2776 (2006).CrossRefGoogle Scholar
  23. (23).
    M. Kowalczyk, E. Piorkowska, P. Kulpinski, and M. Pracella, Compos. Part A: Appl. Sci. Manuf., 42, 1509 (2011).CrossRefGoogle Scholar
  24. (24).
    M. J. John, R. Anandjiwala, K. Oksman, and A. P. Mathew, J. Appl. Polym. Sci., doi: 10.1002/app.37884 (2012).Google Scholar
  25. (25).
    T. H. Lim, K. W. Oh, and S. H. Kim, J. Appl. Polym. Sci., 123, 388 (2012).CrossRefGoogle Scholar
  26. (26).
    J. Y. Kim, D. K. Kim, and S. H. Kim, Eur. Polym. J., 45, 316 (2009).CrossRefGoogle Scholar
  27. (27).
    J. Y. Kim, H. J. Choi, C. S. Kang, and S. H. Kim, Polym. Composite., 31, 858 (2010).Google Scholar
  28. (28).
    L. Petersson and K. Oksman, Compos. Sci. Technol., 66, 2187 (2006).CrossRefGoogle Scholar
  29. (29).
    B. Guo, D. Jia, and C. Cai, Eur. Polym. J., 40, 1743 (2004).CrossRefGoogle Scholar
  30. (30).
    P. Tingaut, T. Zimmermann, and F. Lopez-Suevos, Biomacromolecules, 11, 454 (2010).CrossRefGoogle Scholar
  31. (31).
    L. Suryanegara, A. N. Nakagaito, and H. Yano, Compos, Sci, Technol., 69, 1187 (2009).CrossRefGoogle Scholar
  32. (32).
    D. Wu, L. Wu, L. Wu, B. Wu, Y. Zhang, and M. Zhang, J. Polym. Sci. Part B: Polym. Phys., 45, 1100 (2007).CrossRefGoogle Scholar
  33. (33).
    P. M. Visakh, S. Thomas, K. Oksman, and A. P. Mathew, Compos. Part A: Appl. Sci. Manuf., 43, 735 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea

Personalised recommendations