Skip to main content
Log in

A comparison of the cationic ring-opening polymerizations of 3-oxetanol and glycidol

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The technologically important polymers poly(3-oxetanol) and polyglycidol (sometimes referred to as polyglycerol) were both synthesized in high yield by a one-pot BF3-catalyzed cationic ring-opening polymerization of the respective monomers in dichloromethane at ambient temperature. The polymerization reactions and the resulting polymers were compared. The polymerization of 3-oxetanol was less exothermic than the polymerization of glycidol under identical reaction conditions, because of the lower ring strain in 3-oxetanol than in glycidol, confirmed by semi-empirical calculations. The resulting polymers were similar, i.e., they had similar Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectra, molecular weights, thermal properties and physical characteristics. However, the poly(3-oxetanol) had a higher ratio of secondary to primary alcohols than did polyglycidol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Tokar, P. Kubisa, S. Penczek, and A. Dworak, Macromolecules, 27, 320 (1994).

    Article  CAS  Google Scholar 

  2. A. Sunder, R. Hanselmann, H. Frey, and R. Mülhaupt, Macromolecules, 32, 4240 (1999).

    Article  CAS  Google Scholar 

  3. A. T. Royappa, N. Dalal, and M. W. Giese, J. Appl. Polym. Sci., 82, 2290 (2001).

    Article  CAS  Google Scholar 

  4. A. T. Royappa, M. L. Vogt, and V. Sharma, J. Appl. Polym. Sci., 91, 1344 (2004).

    Article  CAS  Google Scholar 

  5. H. Frey and R. Haag, J. Biotechnol., 90, 257 (2002).

    CAS  Google Scholar 

  6. Y.-C. Huang, A. T. Royappa, S. Tundel, K. Tsukamoto, and V. Sharma, J. Appl. Polym. Sci., 111, 2275 (2009).

    Article  CAS  Google Scholar 

  7. X. Yu, Z. Liu, J. Janzen, I. Chafeeva, S. Horte, W. Chen, R. K. Kainthan, J. N. Kizhakkedathu, and D. E. Brooks, Nat. Mater., 11, 468 (2012), and references therein.

    Article  CAS  Google Scholar 

  8. S.-C. Kim, T. H. Oh, D. W. Kim, C. Lee, and Y. Kang, Macromol. Res., 17, 141 (2009).

    Article  CAS  Google Scholar 

  9. J. A. Wojtowicz and R. J. Polak, J. Org. Chem., 38, 2061 (1973).

    Article  CAS  Google Scholar 

  10. E. J. Vandenberg, J. C. Mullis, R. S. Juvet, T. Miller, and R. A. Nieman, J. Polym. Sci. Part A: Polym. Chem., 27, 3113 (1989).

    Article  CAS  Google Scholar 

  11. P. Kubisa and S. Penczek, Prog. Polym. Sci., 24, 1409 (1999).

    Article  CAS  Google Scholar 

  12. C. J. Hawker, R. Lee, and J. M. J. Fréchet, J. Am. Chem. Soc., 113, 4583 (1991).

    Article  CAS  Google Scholar 

  13. W. Radke, G. Litvineko, and A. H. E. Müller, Macromolecules, 31, 239 (1998).

    Article  CAS  Google Scholar 

  14. E. Caytan, G. S. Remaud, E. Tenailleau, and S. Akoka, Talanta, 71, 1016 (2007).

    Article  CAS  Google Scholar 

  15. P. Rempp and E. W. Merrill, in Polymer Synthesis, 2nd ed., Hüthig & Wepf, Heidelberg, 1991, p 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Timothy Royappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royappa, A.T., Vashi, M.R., Russo, C.L. et al. A comparison of the cationic ring-opening polymerizations of 3-oxetanol and glycidol. Macromol. Res. 21, 1069–1074 (2013). https://doi.org/10.1007/s13233-013-1151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1151-1

Keywords

Navigation