Skip to main content
Log in

Effects of ligand and cosolvent on oxidative coupling polymerization of 2,6-dimethylphenol catalyzed by chelating amine-copper(II) complexes

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The influence of chelating amine ligands, copper precursors, and solvent composition on copper-catalyzed oxidative coupling of 2,6-dimethylphenol was investigated. The most efficient catalytic reaction was conducted with CuCl2-di-tert-butylethylenediamine (Dt-BEDA) complex in anisole or toluene with alcohol cosolvent. Slight structural changes in the N-substituent, backbone, or coordination atom of the ligand significantly dropped catalytic activities, leading to a low polymer yield. Alcohol cosolvent was necessary to synthesize a polymer of high molecular weight \(\left( {\overline {M_n } > 10,000} \right)\) with the copper(II) catalyst in toluene. With increasing alcohol ratios, the isolated yields and \(\overline {M_n }\) values of the resulting polymers gradually decreased. However, the use of sterically bulky t-butanol produced polymers of the desired molecular weight ranges with low polydispersity indexes (PDI, <2) and without a significant drop in isolated yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance, J. Am. Chem. Soc., 81, 6335 (1959).

    Article  CAS  Google Scholar 

  2. G. F. Endres, A. S. Hay, and J. W. Eustance, J. Org. Chem., 28, 1300 (1963).

    Article  CAS  Google Scholar 

  3. A. S. Hay, J. Polym. Sci. Part A: Polym. Chem., 36, 505 (1998).

    Article  CAS  Google Scholar 

  4. H. Uyama and S. Kobayashi, Chemotechnology, 22 (1999).

    Google Scholar 

  5. A. F. Yee, Polym. Eng. Sci., 17, 213 (1977).

    Article  CAS  Google Scholar 

  6. S. T. Wellinghoff and E. Baer, J. Appl. Polym. Sci., 22, 2025 (1978).

    Article  CAS  Google Scholar 

  7. J. Krijgsman and R. J. Gaymans, Polymer, 44, 7589 (2003).

    Article  CAS  Google Scholar 

  8. O. Olabisi, L. M. Obeson, and M. T. Shaw, Polymer-Polymer Miscibility, Academic Press, New York, 1979, and references therein.

    Google Scholar 

  9. P. J. Baesjou, W. L. Driessen, G. Challa, and J. Reedijk, Macromolecules, 32, 270 (1999).

    Article  CAS  Google Scholar 

  10. P. Gamez, S. Gupta, and J. Reedijk, C. R. Chim., 10, 295 (2007).

    Article  CAS  Google Scholar 

  11. S. Kobayashi and H. Higashimura, Prog. Polym. Sci., 28, 1015 (2003).

    Article  CAS  Google Scholar 

  12. H. Higashimura, M. Kubota, K. Oouchi, D. Fukushima, and K. Tanaka, Sumitomo Kagaku, 2, 1 (2008).

    Google Scholar 

  13. W. Chen and G. Challa, Eur. Polym. J., 26, 1211 (1990).

    Article  Google Scholar 

  14. P. G. Aubel, S. S. Khokhar, W. L. Driessen, G. Challa, and J. Reedijk, J. Mol. Catal. A, 175, 27 (2001).

    Article  CAS  Google Scholar 

  15. A. Camus, M. S. Garozzo, N. Marsich, and M. Mari, J. Mol. Catal. A, 112, 353 (1996).

    Article  CAS  Google Scholar 

  16. Y. M. Chung, W. S. Ahn, and P. K. Lim, J. Mol. Catal. A, 148, 117 (1999).

    Article  CAS  Google Scholar 

  17. D. M. White and H. J. Klopfer, J. Polym. Sci., 10, 1565 (1972).

    CAS  Google Scholar 

  18. M. K. Denk, M. J. Krause, D. F. Niyogi, and N. K. Gill, Tetrahedron, 59, 7565 (2003).

    Article  CAS  Google Scholar 

  19. S. P. Roche, M.-L. Teyssot, and A. Gautier, Tetrahedron Lett., 51, 1265 (2010).

    Article  CAS  Google Scholar 

  20. J. M. Kliegman and R. K. Barnes, Tetrahedron, 26, 2555 (1970).

    Article  CAS  Google Scholar 

  21. A. Ando and T. Shioiri, Tetrahedron, 45, 4969 (1989).

    Article  CAS  Google Scholar 

  22. A. S. Hay, Macromolecules, 2, 107 (1969).

    Article  CAS  Google Scholar 

  23. F. J. Viersen, G. Challa, and J. Reedijk, Polymer, 31, 1368 (1990).

    Article  CAS  Google Scholar 

  24. D. P. Mobley, J. Polym. Sci., 22, 3203 (1984).

    CAS  Google Scholar 

  25. Y. M. Chung, W. S. Ahn, and P. K. Lim, Appl. Catal. A: Gen., 192, 165 (2000).

    Article  CAS  Google Scholar 

  26. H. Y. Cho, B. H. Han, I. Kim, and H.-j. Paik, Macromol. Res., 14, 539 (2006).

    Article  CAS  Google Scholar 

  27. S. J. A. Guieu, A. M. M. Lanfredi, C. Massera, L. D. Pachón, P. Gamez, and J. Reedijk, Catalysis Today, 96, 259 (2004).

    Article  CAS  Google Scholar 

  28. Triethylamine itself was reported ineffective as well in the Cu(I)-TMEDA catalyzed polymerization due to its steric bulkiness. See ref. 2(a).

  29. H. Finkbeiner, A. S. Hay, H. S. Blanchard, and G. F. Endres, J. Org. Chem., 31, 549 (1966).

    Article  CAS  Google Scholar 

  30. Y. Shibasaki, M. Nakamura, R. Ishimaru, J. N. Kondo, and M. Ueda, Chem. Lett., 34, 662 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesook Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Feng, X., Kim, Y.T. et al. Effects of ligand and cosolvent on oxidative coupling polymerization of 2,6-dimethylphenol catalyzed by chelating amine-copper(II) complexes. Macromol. Res. 21, 1054–1058 (2013). https://doi.org/10.1007/s13233-013-1150-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1150-2

Keywords

Navigation