Skip to main content

Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering

Abstract

In this paper, heparin was introduced into electrospun gelatin nanofibrous scaffold for assessment as a controlled delivery device in vascular tissue engineering application. Hybrid gelatin-heparin fibers with smooth surfaces and no bead defects were produced from gelatin solutions with 18% w/v in acetic acid aqueous solution. A significant decrease in fiber diameter was observed when the heparin content was increased from 1 to 5 wt%. The properties of composite gelatin-heparin scaffolds were confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) measurement. The gelatin-heparin fibrous scaffolds were also cross-linked using 1 wt% glutaraldehyde vapor-phase for 7 days. A sustained release of heparin could be achieved from gelatinheparin scaffolds over 14 days. The results of the biocompatibility in vitro tests carried out using human umbilical vein endothelial cells indicated good cell viability and proliferation on the gelatin-heparin scaffolds. The results demonstrated that the use of electrospun gelatin fibers as heparin carriers could be promising for vascular tissue applications.

This is a preview of subscription content, access via your institution.

References

  1. E. R. Kenawy, A. H. Fouad, E. N. Mohamed, and M. O. Raphael, Polym. Int., 57, 85 (2008).

    Article  CAS  Google Scholar 

  2. E. Luong-Van, L. Grøndahl, K. N. Chua, K. W. Leong, N. Victor, and S. M. Cool, Biomaterials, 27, 2042 (2006).

    Article  CAS  Google Scholar 

  3. L. C. Chery, W. D. Yang, M. C. Farach-Carson, and J. F. Rabot, Biomacromolecules, 8, 1116 (2007).

    Article  Google Scholar 

  4. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong, Biomacromolecules, 6, 2017 (2005).

    Article  CAS  Google Scholar 

  5. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  6. A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, J. Demeester, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen, Macromolecules, 33, 3705 (2000).

    Article  CAS  Google Scholar 

  7. P. R. Taylor, M. J. H. N. Wolfe, M. R. Tyrrell, A. O. Mansfield, A. N. Nicolaides, and R. E. Houston, Brit. J. Surg., 77, 1125 (1990).

    Article  CAS  Google Scholar 

  8. W. E. Cohn, Curr. Opin. Cardiol., 19, 589 (2004).

    Article  Google Scholar 

  9. K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Adv. Drug Deliv. Rev., 61, 1020 (2009).

    Article  CAS  Google Scholar 

  10. R. Jaeger, M. M. Bergshoef, C. M. I. Batlle, E. Holger, J. S., and G. Vancso, Macromol. Symp., 127, 141 (1998).

    Article  CAS  Google Scholar 

  11. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  12. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. A, 60, 613 (2002).

    Article  CAS  Google Scholar 

  13. V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, and Y. K. Vohra, Biomacromolecules, 8, 631 (2007).

    Article  CAS  Google Scholar 

  14. V. Thomas, X. Zhang, and Y. K. Vohra, Biotechnol. Bioeng., 104, 1025 (2009).

    Article  CAS  Google Scholar 

  15. H. Y. Wang, Y. K. Feng, H. Y. Zhao, R. F. Xiao, J. Lu, L. Zhang, and J. T. Guo, Macromol. Res., 20, 347 (2012).

    Article  Google Scholar 

  16. S. Kidoaki, I. K. Kwon, and T. Matsuda, Biomaterials, 26, 37 (2005).

    Article  CAS  Google Scholar 

  17. H. Akin and N. Hasirci, J. Appl. Polym. Sci., 58, 95 (1995).

    Article  CAS  Google Scholar 

  18. X. K. Li, S. X. Cai, B. Liu, Z. L. Xu, X. Z. Dai, and K. W. Ma, Colloids Surf. B: Biointerfaces, 57, 198 (2007).

    Article  CAS  Google Scholar 

  19. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, Acta Biomater., 3, 321 (2007).

    Article  CAS  Google Scholar 

  20. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, Biomaterials, 20, 409 (2009).

    Article  Google Scholar 

  21. Y. Li, X. G. Chen, N. Liu, C. S. Liu, C. G. Liu, and X. H. Meng, Carbohydr. Polym., 67, 227 (2007).

    Article  CAS  Google Scholar 

  22. P. K. Smith, A. K. Mallia, and G. T. Hermanson, Anal. Biochem., 109, 466 (1980).

    Article  CAS  Google Scholar 

  23. Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, Polymer, 47, 2911 (2006).

    Article  CAS  Google Scholar 

  24. Z. M. Huang, Y. Z. Zhang, S. Ramakrishna, and C. T. Lim, Polymer, 45, 5361 (2004).

    Article  CAS  Google Scholar 

  25. B. Nandana and S. C. Kundu, Carbohydr. Polym., 85, 325 (2011).

    Article  Google Scholar 

  26. J. H. Song, H. E. Kim, and H. W. Kim, J. Mater. Sci. Mater. Med., 19, 95 (2008).

    Article  CAS  Google Scholar 

  27. J. Gautam and H. Schott, J. Pharm. Sci., 83, 316 (1994).

    Article  CAS  Google Scholar 

  28. J. D. Schiffman and C. L. Schauer, Biomacromolecules, 8, 594 (2007).

    Article  CAS  Google Scholar 

  29. J. H. Ko, H. Y. Yin, J. An, and D. J. Chung, Macromol. Res., 18, 137 (2010).

    Article  CAS  Google Scholar 

  30. B. Han, J. Jaurequi, B. W. Tang, and M. E. Nimni, J. Biomed. Mater. Res. A, 65, 118 (2003).

    Article  Google Scholar 

  31. S. Panzavolta, M. Gioffré, M. L. Focarete, C. Gualandi, L. Foroni, and A. Bigi, Acta Biomater., 7, 1702 (2011).

    Article  CAS  Google Scholar 

  32. H. C. Chen, W. C. Jao, and M. C. Yang, Polym. Adv. Technol., 20, 98 (2009).

    Article  CAS  Google Scholar 

  33. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Polymer, 46, 5904 (2005).

    Article  Google Scholar 

  34. L. G. Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials, 29, 4532 (2008).

    Article  Google Scholar 

  35. M. Y. Li, Y. Guo, Y. Wei, A. G. Macmiarmid, and P. I. Lelkes, Biomaterials, 27, 2705 (2006).

    Article  CAS  Google Scholar 

  36. J. M. Lee, G. Y. Tae, Y. H. Kim, I. S. Park, and S. H. Kim, Biomaterials, 29, 1872 (2008).

    Article  CAS  Google Scholar 

  37. S. J. Heo, S. E. Kim, J. Wei, Y. T. Hyun, H. S. Yun, D. H. Kim, J. W. Shin, and J. Shin, J. Biomed. Mater. Res. A, 89, 108 (2009).

    Google Scholar 

  38. M. J. B. Wissink, R. Beernink, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van-Aken, and J. Feijen, J. Control. Release, 64, 103 (2000).

    Article  CAS  Google Scholar 

  39. M. Ishihara, M. Sato, H. Hattori, Y. Saito, H. Yura, K. Ono, K. Masuoka, M. Kikuchi, K. Fujikawa, and A. Kurita, J. Biomed. Mater. Res. A, 56, 536 (2001).

    Article  CAS  Google Scholar 

  40. D. Gospodarowicz and J. Cheng, J. Cell. Physiol., 128, 475 (1986).

    Article  CAS  Google Scholar 

  41. J. J. Yoon, H. J. Chung, H. J. Lee, and T. G. Park, J. Biomed. Mater. Res. A, 79, 934 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Feng, Y., Fang, Z. et al. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromol. Res. 21, 860–869 (2013). https://doi.org/10.1007/s13233-013-1105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1105-7

Keywords

  • gelatin
  • heparin
  • electrospinning
  • crosslinking
  • nanofibers
  • vascular tissue engineering