Skip to main content

Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable aliphatic polyesters

Abstract

Biocompatible and biodegradable polyesters have immense potential in medical applications as drug delivery vehicles and tissue engineering scaffolds. In this study, we synthesized biodegradable aliphatic polyesters, namely poly(butylene pimelate) (PBPi), poly(butylene succinate) (PBSu), and poly(butylene sebacate) (PBSe), by the polycondensation of equimolar quantities of dicarboxylic acid and diol using mesoporous SBA-15 silica as heterogeneous catalyst. We then compared its performance with a conventional homogenous catalyst, SnCl2ยท2H2O, which did not form these polymers. The synthesized SBA-15 catalyst was characterized by electron microscopy, nitrogen adsorption-desorption isotherm and infrared spectroscopy. The synthesized polyesters were evaluated using infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy and goniometry. The combined results demonstrate that the SBA-15 mesoporous catalyst formed higher molecular weight degradable polyesters in addition to higher yield and purity, thus confirming the superiority of the mesoporous silica catalyst for polymer formation.

This is a preview of subscription content, access via your institution.

References

  1. M. A. Ward and K. G. Theoni, Polymers, 3, 1215 (2011).

    Articleย  CASย  Google Scholarย 

  2. P. Kuppan, K. S. Vasanthan, D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman, Biomacromolecules, 12, 3156 (2011).

    Articleย  CASย  Google Scholarย 

  3. B. Dhandayuthapani, U. M. Krishnan, and S. Sethuraman, J. Biomed. Mater. Res. A, 94, 264 (2010).

    Google Scholarย 

  4. H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Prog. Polym. Sci., 37, 237 (2012).

    Articleย  CASย  Google Scholarย 

  5. K. M. Huh, H. C. Kang, Y. J. Lee, and Y. H. Bae, Macromol. Res., 20, 224 (2012).

    Articleย  CASย  Google Scholarย 

  6. S. Sethuraman, L. S. Nair, S. El-Amin, R. Farrar, M.-T. N. Nguyen, A. Singh, H. R. Allcock, Y. E. Greish, P. W. Brown, and C. T. Laurencin, J. Biomed. Mater. Res. A, 77, 679 (2006).

    Google Scholarย 

  7. S. Lakshmi, D. S. Katti, and C. T. Laurencin, Adv. Drug Deliv. Rev., 55, 467 (2003).

    Articleย  CASย  Google Scholarย 

  8. C. T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A. E. Rosenberg, P. Hanff, L. Edsberg, W. Hayes, and R. Langer, J. Orthop. Res., 11, 256 (1993).

    Articleย  CASย  Google Scholarย 

  9. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    CASย  Google Scholarย 

  10. J. H. De Groot, R. De Vrijer, A. J. Pennings, J. Klompmaker, R. P. Veth, and H. W. Jansen, Biomaterials, 17, 163 (1996).

    Articleย  Google Scholarย 

  11. F. D. Kopinkea, M. Remmlera, K. Mackenziea, M. Mรถdera, and O. Wachsen, Polym. Degrad. Stab., 53, 329 (1996).

    Articleย  Google Scholarย 

  12. S. Sethuraman, L. S. Nair, S. E. Amin, M. T. Nguyen, A. Singh, Krogman, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin, Acta Biomater., 6, 1931 (2010).

    Articleย  CASย  Google Scholarย 

  13. M. C. Serrano, R. Pagani, M. Vallet-Regรญ, J. Peรฑa, A. Rรกmila, I. Izquierdo, and M. T. Portolรฉs, Biomaterials, 25, 5603 (2004).

    Articleย  CASย  Google Scholarย 

  14. L. Luo, X. Wei, and G. Q. Chen, J. Biomater. Sci., 20, 1537 (2009).

    Articleย  CASย  Google Scholarย 

  15. G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho, and H. B. Lee, Macromol. Res., 11, 207 (2003).

    Articleย  CASย  Google Scholarย 

  16. M. J. Lydon, T. W. Minett, and B. J. Tighe, Biomaterials, 6, 396 (1985).

    Articleย  CASย  Google Scholarย 

  17. C. M. Simone and V. M. Maria de Fatima, Eur. Polym. J., 37, 2123 (2001).

    Articleย  Google Scholarย 

  18. A. Hegedรผs, Z. Hell, T. Vargadi, A. Potor, and I. Gresits, Catal. Lett., 17, 99 (2007).

    Articleย  Google Scholarย 

  19. A. Corma, L. T. Nemeth, M. Renz, and S. Valencia, Nature, 412, 423 (2001).

    Articleย  CASย  Google Scholarย 

  20. C. Lesainta, W. R. Glomma, ร˜. Borg, S. Eri, E. Rytter, and G. ร˜yea, Appl. Catal. A: Gen., 351, 131 (2008).

    Articleย  Google Scholarย 

  21. C. D. Rosa, F. Auriemma, C. Spera, G. Talarico, and M. Gahleitner, Polymer, 45, 5875 (2004).

    Articleย  Google Scholarย 

  22. V. M. Allenger, D. D. McLean, and M. Ternan, J. Catal., 131, 305 (1991).

    Articleย  CASย  Google Scholarย 

  23. I. S. Lee, Y. W. Kwak, H. D. Lee, and Y. S. Gal, J. Ind. Eng. Chem., 14, 720 (2008).

    Articleย  CASย  Google Scholarย 

  24. Z. Wei, L. Liu, and M. Qi, React. Funct. Polym., 66, 1411 (2006).

    Articleย  CASย  Google Scholarย 

  25. J. B. Zeng, Y. D. Li, Q. Y. Zhu, K. K. Yang, X. L. Wang, and Y. Z. Wang, Polymer, 50, 1178 (2009).

    Articleย  CASย  Google Scholarย 

  26. K. Ishihara, M. Nakayama, S. Ohara, and H. Yamamoto, Tetrahedron, 58, 8179 (2002).

    Articleย  CASย  Google Scholarย 

  27. N. Atsushi, S. Daisuke, I. Junichi, O. Bungo, K. Hiroto, and E. Takeshi, Macromolecules, 37, 2332 (2004).

    Articleย  Google Scholarย 

  28. A. Takasu, Y. Iio, Y. Oishi, Y. Narukawa, and T. Hirabayashi, Macromolecules, 38, 1048 (2005).

    Articleย  CASย  Google Scholarย 

  29. A. Corma and D. Kumar, Stud. Surf. Sci. Catal., 117, 201 (1998).

    Articleย  CASย  Google Scholarย 

  30. J. J. Chiu, D. J. Pine, S. T. Bishop, and B. F. Chmelka, J. Catal., 221, 400 (2004).

    Articleย  CASย  Google Scholarย 

  31. A. Corma, Chem. Rev., 95, 559 (1995).

    Articleย  CASย  Google Scholarย 

  32. K. Tanabe and W. F. Hรถlderich, Appl. Catal. A: Gen., 181, 399 (1999).

    Articleย  CASย  Google Scholarย 

  33. G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, and G. Terzoni, J. Catal., 157, 227 (1995).

    Articleย  CASย  Google Scholarย 

  34. C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo, and G. Bellussi, Microporous Mesoporous Mater., 27, 345 (1999).

    Articleย  CASย  Google Scholarย 

  35. W. Zhao, P. Salame, F. Launay, A. Gรฉdรฉon, and Z. Hao, J. Porous Mater., 15, 139 (2008).

    Articleย  CASย  Google Scholarย 

  36. K. S. Kim, J. H. Song, J. H. Kim, and G. Seo, Stud. Surf. Sci. Catal., 146, 505 (2003).

    Articleย  CASย  Google Scholarย 

  37. C. Liang, Z. Li, and S. Dai, Angew. Chem. Int. Ed. Engl., 47, 3696 (2008).

    Articleย  CASย  Google Scholarย 

  38. J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, Microporous Mesoporous Mater., 49, 189 (2001).

    Articleย  CASย  Google Scholarย 

  39. Z.-A. Qiao, L. Zhang, M. Guo, Y. Liu, and Q. Huo, Chem. Mater., 21, 3823 (2009).

    Articleย  CASย  Google Scholarย 

  40. P. Kim, Y. Kim, C. Kim, H. Kim, Y. Park, J. H. Lee, I. K. Song, and J. Yi, Catal. Lett., 89, 185 (2003).

    Articleย  CASย  Google Scholarย 

  41. D. Chandra, S. Mridha, D. Basak, and A. Bhaumik, Chem. Commun., 17, 2384 (2009).

    Articleย  Google Scholarย 

  42. P. Selvam, N. V. Krishna, and B. Viswanathan, J. Indian Inst. Sci., 90, 271 (2010).

    CASย  Google Scholarย 

  43. M. Bhagiyalakshmi, S. D. Park, W. S. Cha, and H. T. Jang, Appl. Surf. Sci., 256, 6660 (2010).

    Articleย  CASย  Google Scholarย 

  44. Q. Lu, F. Gao, S. Komarneni, and T. E. Mallouk, J. Am. Chem. Soc., 126, 8650 (2004).

    Articleย  CASย  Google Scholarย 

  45. O. C. Snead, R. Furner, and C. C. Liu, Biochem. Pharmacol., 38, 4375 (1989).

    Articleย  CASย  Google Scholarย 

  46. R. S. Griffith, A. L. Norins, and C. Kagan, Dermatologica, 156, 257 (1978).

    Articleย  CASย  Google Scholarย 

  47. A. King, M. A. Selak, and E. Gottlie, Oncogene, 25, 4675 (2006).

    Articleย  CASย  Google Scholarย 

  48. P. P. Halarnkar and G. J. Blomquist, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 92, 227 (1989).

    CASย  Google Scholarย 

  49. S. Sugihara, K. Toshima, and S. Matsumura, Macromol. Rapid Commun., 27, 203 (2006).

    Articleย  CASย  Google Scholarย 

  50. Y. Y. Linko, Z. L. Wang, and J. Seppรคl, J. Biotechnol., 40, 133 (1995).

    Articleย  CASย  Google Scholarย 

  51. A. A. Panova and D. L. Kaplan, Biotechnol. Bioeng., 84, 103 (2003).

    Articleย  CASย  Google Scholarย 

  52. S. Velmathi, R. Nagahata, J. Sugiyama, and K. Takeuchi, Macromol. Rapid Commun., 26, 1163 (2005).

    Articleย  CASย  Google Scholarย 

  53. C. H. Chen, C. S. Yang, M. Chen, Y.-C. Shih, H.-S. Hsu, and S.-F. Lu, eXPRESS Polym. Lett., 5, 284 (2011).

    Articleย  CASย  Google Scholarย 

  54. M. Sasidharan, N. K. Mal, and A. Bhaumik, J. Mater. Chem. 17, 278 (2007).

    Articleย  CASย  Google Scholarย 

  55. S. Gandhi, S. Sethuraman, and U. M. Krishnan, J. Porous Mater., 18, 329 (2011).

    Articleย  CASย  Google Scholarย 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gandhi, S., Sethuraman, S. & Krishnan, U.M. Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable aliphatic polyesters. Macromol. Res. 21, 833โ€“842 (2013). https://doi.org/10.1007/s13233-013-1101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1101-y

Keywords