Skip to main content

Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable aliphatic polyesters

Abstract

Biocompatible and biodegradable polyesters have immense potential in medical applications as drug delivery vehicles and tissue engineering scaffolds. In this study, we synthesized biodegradable aliphatic polyesters, namely poly(butylene pimelate) (PBPi), poly(butylene succinate) (PBSu), and poly(butylene sebacate) (PBSe), by the polycondensation of equimolar quantities of dicarboxylic acid and diol using mesoporous SBA-15 silica as heterogeneous catalyst. We then compared its performance with a conventional homogenous catalyst, SnCl2·2H2O, which did not form these polymers. The synthesized SBA-15 catalyst was characterized by electron microscopy, nitrogen adsorption-desorption isotherm and infrared spectroscopy. The synthesized polyesters were evaluated using infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy and goniometry. The combined results demonstrate that the SBA-15 mesoporous catalyst formed higher molecular weight degradable polyesters in addition to higher yield and purity, thus confirming the superiority of the mesoporous silica catalyst for polymer formation.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    M. A. Ward and K. G. Theoni, Polymers, 3, 1215 (2011).

    Article  CAS  Google Scholar 

  2. (2)

    P. Kuppan, K. S. Vasanthan, D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman, Biomacromolecules, 12, 3156 (2011).

    Article  CAS  Google Scholar 

  3. (3)

    B. Dhandayuthapani, U. M. Krishnan, and S. Sethuraman, J. Biomed. Mater. Res. A, 94, 264 (2010).

    Google Scholar 

  4. (4)

    H. Tian, Z. Tang, X. Zhuang, X. Chen, and X. Jing, Prog. Polym. Sci., 37, 237 (2012).

    Article  CAS  Google Scholar 

  5. (5)

    K. M. Huh, H. C. Kang, Y. J. Lee, and Y. H. Bae, Macromol. Res., 20, 224 (2012).

    Article  CAS  Google Scholar 

  6. (6)

    S. Sethuraman, L. S. Nair, S. El-Amin, R. Farrar, M.-T. N. Nguyen, A. Singh, H. R. Allcock, Y. E. Greish, P. W. Brown, and C. T. Laurencin, J. Biomed. Mater. Res. A, 77, 679 (2006).

    Google Scholar 

  7. (7)

    S. Lakshmi, D. S. Katti, and C. T. Laurencin, Adv. Drug Deliv. Rev., 55, 467 (2003).

    Article  CAS  Google Scholar 

  8. (8)

    C. T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A. E. Rosenberg, P. Hanff, L. Edsberg, W. Hayes, and R. Langer, J. Orthop. Res., 11, 256 (1993).

    Article  CAS  Google Scholar 

  9. (9)

    P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    CAS  Google Scholar 

  10. (10)

    J. H. De Groot, R. De Vrijer, A. J. Pennings, J. Klompmaker, R. P. Veth, and H. W. Jansen, Biomaterials, 17, 163 (1996).

    Article  Google Scholar 

  11. (11)

    F. D. Kopinkea, M. Remmlera, K. Mackenziea, M. Mödera, and O. Wachsen, Polym. Degrad. Stab., 53, 329 (1996).

    Article  Google Scholar 

  12. (12)

    S. Sethuraman, L. S. Nair, S. E. Amin, M. T. Nguyen, A. Singh, Krogman, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin, Acta Biomater., 6, 1931 (2010).

    Article  CAS  Google Scholar 

  13. (13)

    M. C. Serrano, R. Pagani, M. Vallet-Regí, J. Peña, A. Rámila, I. Izquierdo, and M. T. Portolés, Biomaterials, 25, 5603 (2004).

    Article  CAS  Google Scholar 

  14. (14)

    L. Luo, X. Wei, and G. Q. Chen, J. Biomater. Sci., 20, 1537 (2009).

    Article  CAS  Google Scholar 

  15. (15)

    G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho, and H. B. Lee, Macromol. Res., 11, 207 (2003).

    Article  CAS  Google Scholar 

  16. (16)

    M. J. Lydon, T. W. Minett, and B. J. Tighe, Biomaterials, 6, 396 (1985).

    Article  CAS  Google Scholar 

  17. (17)

    C. M. Simone and V. M. Maria de Fatima, Eur. Polym. J., 37, 2123 (2001).

    Article  Google Scholar 

  18. (18)

    A. Hegedüs, Z. Hell, T. Vargadi, A. Potor, and I. Gresits, Catal. Lett., 17, 99 (2007).

    Article  Google Scholar 

  19. (19)

    A. Corma, L. T. Nemeth, M. Renz, and S. Valencia, Nature, 412, 423 (2001).

    Article  CAS  Google Scholar 

  20. (20)

    C. Lesainta, W. R. Glomma, Ø. Borg, S. Eri, E. Rytter, and G. Øyea, Appl. Catal. A: Gen., 351, 131 (2008).

    Article  Google Scholar 

  21. (21)

    C. D. Rosa, F. Auriemma, C. Spera, G. Talarico, and M. Gahleitner, Polymer, 45, 5875 (2004).

    Article  Google Scholar 

  22. (22)

    V. M. Allenger, D. D. McLean, and M. Ternan, J. Catal., 131, 305 (1991).

    Article  CAS  Google Scholar 

  23. (23)

    I. S. Lee, Y. W. Kwak, H. D. Lee, and Y. S. Gal, J. Ind. Eng. Chem., 14, 720 (2008).

    Article  CAS  Google Scholar 

  24. (24)

    Z. Wei, L. Liu, and M. Qi, React. Funct. Polym., 66, 1411 (2006).

    Article  CAS  Google Scholar 

  25. (25)

    J. B. Zeng, Y. D. Li, Q. Y. Zhu, K. K. Yang, X. L. Wang, and Y. Z. Wang, Polymer, 50, 1178 (2009).

    Article  CAS  Google Scholar 

  26. (26)

    K. Ishihara, M. Nakayama, S. Ohara, and H. Yamamoto, Tetrahedron, 58, 8179 (2002).

    Article  CAS  Google Scholar 

  27. (27)

    N. Atsushi, S. Daisuke, I. Junichi, O. Bungo, K. Hiroto, and E. Takeshi, Macromolecules, 37, 2332 (2004).

    Article  Google Scholar 

  28. (28)

    A. Takasu, Y. Iio, Y. Oishi, Y. Narukawa, and T. Hirabayashi, Macromolecules, 38, 1048 (2005).

    Article  CAS  Google Scholar 

  29. (29)

    A. Corma and D. Kumar, Stud. Surf. Sci. Catal., 117, 201 (1998).

    Article  CAS  Google Scholar 

  30. (30)

    J. J. Chiu, D. J. Pine, S. T. Bishop, and B. F. Chmelka, J. Catal., 221, 400 (2004).

    Article  CAS  Google Scholar 

  31. (31)

    A. Corma, Chem. Rev., 95, 559 (1995).

    Article  CAS  Google Scholar 

  32. (32)

    K. Tanabe and W. F. Hölderich, Appl. Catal. A: Gen., 181, 399 (1999).

    Article  CAS  Google Scholar 

  33. (33)

    G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, and G. Terzoni, J. Catal., 157, 227 (1995).

    Article  CAS  Google Scholar 

  34. (34)

    C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo, and G. Bellussi, Microporous Mesoporous Mater., 27, 345 (1999).

    Article  CAS  Google Scholar 

  35. (35)

    W. Zhao, P. Salame, F. Launay, A. Gédéon, and Z. Hao, J. Porous Mater., 15, 139 (2008).

    Article  CAS  Google Scholar 

  36. (36)

    K. S. Kim, J. H. Song, J. H. Kim, and G. Seo, Stud. Surf. Sci. Catal., 146, 505 (2003).

    Article  CAS  Google Scholar 

  37. (37)

    C. Liang, Z. Li, and S. Dai, Angew. Chem. Int. Ed. Engl., 47, 3696 (2008).

    Article  CAS  Google Scholar 

  38. (38)

    J. Y. Zheng, J. B. Pang, K. Y. Qiu, and Y. Wei, Microporous Mesoporous Mater., 49, 189 (2001).

    Article  CAS  Google Scholar 

  39. (39)

    Z.-A. Qiao, L. Zhang, M. Guo, Y. Liu, and Q. Huo, Chem. Mater., 21, 3823 (2009).

    Article  CAS  Google Scholar 

  40. (40)

    P. Kim, Y. Kim, C. Kim, H. Kim, Y. Park, J. H. Lee, I. K. Song, and J. Yi, Catal. Lett., 89, 185 (2003).

    Article  CAS  Google Scholar 

  41. (41)

    D. Chandra, S. Mridha, D. Basak, and A. Bhaumik, Chem. Commun., 17, 2384 (2009).

    Article  Google Scholar 

  42. (42)

    P. Selvam, N. V. Krishna, and B. Viswanathan, J. Indian Inst. Sci., 90, 271 (2010).

    CAS  Google Scholar 

  43. (43)

    M. Bhagiyalakshmi, S. D. Park, W. S. Cha, and H. T. Jang, Appl. Surf. Sci., 256, 6660 (2010).

    Article  CAS  Google Scholar 

  44. (44)

    Q. Lu, F. Gao, S. Komarneni, and T. E. Mallouk, J. Am. Chem. Soc., 126, 8650 (2004).

    Article  CAS  Google Scholar 

  45. (45)

    O. C. Snead, R. Furner, and C. C. Liu, Biochem. Pharmacol., 38, 4375 (1989).

    Article  CAS  Google Scholar 

  46. (46)

    R. S. Griffith, A. L. Norins, and C. Kagan, Dermatologica, 156, 257 (1978).

    Article  CAS  Google Scholar 

  47. (47)

    A. King, M. A. Selak, and E. Gottlie, Oncogene, 25, 4675 (2006).

    Article  CAS  Google Scholar 

  48. (48)

    P. P. Halarnkar and G. J. Blomquist, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 92, 227 (1989).

    CAS  Google Scholar 

  49. (49)

    S. Sugihara, K. Toshima, and S. Matsumura, Macromol. Rapid Commun., 27, 203 (2006).

    Article  CAS  Google Scholar 

  50. (50)

    Y. Y. Linko, Z. L. Wang, and J. Seppäl, J. Biotechnol., 40, 133 (1995).

    Article  CAS  Google Scholar 

  51. (51)

    A. A. Panova and D. L. Kaplan, Biotechnol. Bioeng., 84, 103 (2003).

    Article  CAS  Google Scholar 

  52. (52)

    S. Velmathi, R. Nagahata, J. Sugiyama, and K. Takeuchi, Macromol. Rapid Commun., 26, 1163 (2005).

    Article  CAS  Google Scholar 

  53. (53)

    C. H. Chen, C. S. Yang, M. Chen, Y.-C. Shih, H.-S. Hsu, and S.-F. Lu, eXPRESS Polym. Lett., 5, 284 (2011).

    Article  CAS  Google Scholar 

  54. (54)

    M. Sasidharan, N. K. Mal, and A. Bhaumik, J. Mater. Chem. 17, 278 (2007).

    Article  CAS  Google Scholar 

  55. (55)

    S. Gandhi, S. Sethuraman, and U. M. Krishnan, J. Porous Mater., 18, 329 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gandhi, S., Sethuraman, S. & Krishnan, U.M. Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable aliphatic polyesters. Macromol. Res. 21, 833–842 (2013). https://doi.org/10.1007/s13233-013-1101-y

Download citation

Keywords

  • heterogeneous catalyst
  • SBA-15
  • aliphatic polyester
  • microspheres