Skip to main content
Log in

Mechanical performance, water absorption behavior and biodegradability of poly(methyl methacrylate)-modified starch/SBR biocomposites

Macromolecular Research Aims and scope Submit manuscript

Abstract

Natural corn starch was modified by surface grafting with poly(methyl methacrylate) (PMMA) through emulsion copolymerization and then compounded with styrene-butadiene rubber (SBR) latex in order to prepare PMMA-modified starch/SBR biocomposites. The effect of methyl methacrylate (MMA) and starch concentration on the mechanical properties, morphology, toluene swelling behavior, water absorption behavior and biodegradability of PMMA-modified starch/SBR biocomposites was investigated. Results showed that the optimum mechanical properties were achieved when the concentrations of MMA and starch were 10 and 30 phr, respectively, which could be also confirmed through the observations from FE-SEM micrographs and equilibrium welling test. Guth-Gold and Halpin-Tsai models were employed to predict the modulus of PMMA-modified starch/SBR biocomposites. Halpin-Tsai model was better fitted with the experimentally measured data than Guth-Gold model. The water absorption ratio of PMMA-modified starch/SBR biocomposites was strongly influenced by the immersion time and the starch concentration, which further caused a significant effect on the biodegradability of biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. A. Garcia, M. N. Martino, and N. E. Zaritzky, J. Sci. Food Agric., 76, 411 (1998).

    Article  CAS  Google Scholar 

  2. S. H. Imam, L. Mao, L. Chen, and R. V. Greene, Starch (Starke), 51, 225 (1999).

    Article  CAS  Google Scholar 

  3. S. H. Imam, S. H. Gordon, L. Mao, and L. Chen, Polym. Degrad. Stab., 73, 529 (2001)

    Article  CAS  Google Scholar 

  4. G. Sen, R. Kumar, S. Ghosh, and S. Pal, Carbohydr. Polym., 77, 822 (2009).

    Article  CAS  Google Scholar 

  5. J. Gao, S. Zhang, B. Han, Q. Feng, and L. Guo, J. Appl. Polym. Sci., 123, 1261 (2012).

    Article  Google Scholar 

  6. B. R. Pant, H.-J. Jeon, and H. H. Song, Macromol. Res., 19, 307 (2011).

    Article  CAS  Google Scholar 

  7. J. Wu, Y. Wei, J. Lin, and S. Lin, Polymer, 44, 6513 (2003).

    Article  CAS  Google Scholar 

  8. J. Wu, J. Lin, M. Zhou, and C. Wei, Macromol. Rapid Commun., 21, 1032 (2000).

    Article  CAS  Google Scholar 

  9. M. -C. Li, J. K Lee, and U. R. Cho, J. Appl. Polym. Sci., 125, 405 (2012).

    Article  CAS  Google Scholar 

  10. M. Avella, J. J. de Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe, Food Chem., 93, 467 (2005).

    Article  CAS  Google Scholar 

  11. A. Rouiily, L. Rigal, and R. G. Gilbert, Polymer, 45, 7813 (2004).

    Article  Google Scholar 

  12. Y. P. Wu, M. Q. Ji, Q. Qi, Y. Q. Wang, and L. Q. Zhang, Macromol. Rapid Commun., 25, 565 (2004).

    Article  CAS  Google Scholar 

  13. H. Angellier, S. Molina-Boisseau, L. Lebrun, and A. Dufresne, Macromolecules, 38, 3783 (2005).

    Article  CAS  Google Scholar 

  14. H. Angellier, S. Molina-Boisseau, and A. Dufresne, Macromolecules, 38, 9161 (2005).

    Article  CAS  Google Scholar 

  15. Y. P. Wu, Q. Qi, G. H. Liang, and L. Q. Zhang, Carbohydr. Polym., 65, 109 (2006).

    Article  CAS  Google Scholar 

  16. C. Liu, Y. Shao, and D. Jia, Polymer, 49, 2176 (2008).

    Article  CAS  Google Scholar 

  17. Z. F. Wang, Z. Peng, S. D. Li, H. Lin, K. X. Zhang, X. D. She, and X. Fu, Compos. Sci. Technol., 69, 1797 (2009).

    Article  CAS  Google Scholar 

  18. M. Valodkar and S. Thakore, Carbohydr. Polym., 86, 1244 (2011).

    Article  CAS  Google Scholar 

  19. J. H. Hwang, H. Ryu, and U. R. Cho, Elastomer, 43, 221 (2008).

    CAS  Google Scholar 

  20. M. -S. Lee, H. Ryu, and U. R. Cho, Polym. Korea, 34, 58 (2010).

    CAS  Google Scholar 

  21. M. -C. Li, Y.-J. Mun, and U. R. Cho, Elast. Compos., 45, 272 (2010).

    CAS  Google Scholar 

  22. G. Cache-Escamilla, J. I. Cauich-Cupul, E. Mendizabal, J. E. Puig, H. Vazquez-Torres, and P. J. Herrera-Franco, Compos. Part A: Appl. Sci. Manuf., 30, 349 (1999).

    Article  Google Scholar 

  23. H. H. Baek, J. M. Lee, J. E. Cho, J. H. Cho and J. H. Kim, Macromol. Res., 18, 53 (2010).

    Article  CAS  Google Scholar 

  24. Y. Mansoori, S. V. Atghia, S. Shan Sanaei, M. R. Zamanloo, and G. Imanzadeh, Macromol. Res., 18, 1174 (2010).

    Article  CAS  Google Scholar 

  25. N. Wang, M. Li, and J. Zhang, Mater. Lett., 59, 2685 (2005).

    Article  CAS  Google Scholar 

  26. A. Zhu, A. Cai, J. Zhang, H. Jia, and J. Wang, J. Appl. Polym. Sci., 108, 2189 (2008).

    Article  CAS  Google Scholar 

  27. P. S. Chinthamanipeta, S. Kobukata, H. Nakata, and D. A. Shipp, Polymer, 49, 5636 (2008).

    Article  CAS  Google Scholar 

  28. M. Wang, K. P. Pramoda, and S. H. Goh, Polymer, 46, 11510 (2005).

    Article  CAS  Google Scholar 

  29. M. Wang, J.-H. Shi, K. P. Pramoda, and S. H. Goh, Nanotechnology, 18, 235701 (2007).

    Article  Google Scholar 

  30. C. Liu, Y. F. Luo, Z. X. Jia, B. C. Zhong, S. Q. Li, B. C. Guo, and D. M. Jia, eXPRESS Polym. Lett., 5, 591 (2011).

    Article  CAS  Google Scholar 

  31. G. Goncalves, P. A. A. P. Marques, A. Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami, and J. Gracio, J. Mater. Chem., 20, 9927 (2010).

    Article  CAS  Google Scholar 

  32. S. Beyaz and T. Tanrisever, Macromol. Res., 18, 1154 (2010).

    Article  CAS  Google Scholar 

  33. X.-L. Xie, R. K.-Y. Li, Q.-X. Liu, and Y.-W. Mai, Polymer, 45, 2793 (2004).

    Article  CAS  Google Scholar 

  34. M.-C. Li, X. Ge, and U. R. Cho, Macromol. Res., DOI:10.1007/s13233-013-1052-3.

  35. P. J. Flory and J. Rehner, J. Chem. Phys., 11, 512 (1943).

    Article  CAS  Google Scholar 

  36. R. Chandra and R. Rustgi, Polym. Degrad. Stab., 56, 185 (1997).

    Article  CAS  Google Scholar 

  37. M. A. Lopez-Manchado, J. L. Valentin, J. Carretero, F. Barroso, and M. Arroyo, Eur. Polym. J., 43, 4143 (2007).

    Article  CAS  Google Scholar 

  38. E. Guth and O. Gold, J. Appl. Phys., 16, 20 (1945).

    Article  CAS  Google Scholar 

  39. J. C. Halpin, J. Compos. Mater., 3, 732 (1969).

    Google Scholar 

  40. J. L. Willett, J. Appl. Polym. Sci., 54, 1685 (1994).

    Article  CAS  Google Scholar 

  41. I. D. Danjaji, R. Nawang, U. S. Ishiaku, H. Ismail, and Z. A. M. Mohd Ishak, Polym. Test., 21, 75 (2002).

    Article  CAS  Google Scholar 

  42. C. -S. Wu, Polym. Degrad. Stab., 80, 127 (2003).

    Article  Google Scholar 

  43. D. Bikiaris and C. Panayiotou, J. Appl. Polym. Sci., 70, 1503 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ur Ryong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, MC., Ge, X. & Cho, U.R. Mechanical performance, water absorption behavior and biodegradability of poly(methyl methacrylate)-modified starch/SBR biocomposites. Macromol. Res. 21, 793–800 (2013). https://doi.org/10.1007/s13233-013-1088-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1088-4

Keywords

Navigation