Macromolecular Research

, Volume 21, Issue 6, pp 614–623 | Cite as

Characteristics of thermoplastic polyurethane composites containing surface treated multiwalled carbon nanotubes for the underwater applications

  • Hyungu Im
  • Sang Chul Roh
  • Chang Keun KimEmail author


Thermoplastic polyurethane elastomer (TPU) is used as an encapsulant in undersea sonar devices. In order to fabricate desirable composites for underwater applications, TPU prepared from poly(tetramethylene glycol) (PTMG), and methyl diphenyl diisocyanate (MDI) was blended with a multiwalled carbon nanotube (MWCNT). TPU grafted MWCNT (TPU-g-MWCNT) were prepared to fabricate a composite that has better mechanical strength and interfacial adhesion between the TPU matrix and the MWCNTs. The tensile strength of the composite increased with increasing MWCNT content. At a fixed MWCNT content in the composite, the TPU/TPU-g-MWCNT composite exhibited superior tensile strength compared to the TPU composite with pristine MWCNT. The swelling ratio of TPU composite with pristine MWCNT was higher than that of TPU. However, the swelling ratio of the TPU/TPU-g-MWCNT composite was lower than the latter when the composite contains more than 0.5 wt% of TPU-g-MWCNT. In addition, the TPU/TPU-g-MWCNT composite exhibited enhanced mechanical strength and a reduced swelling ratio as compared to TPU after being impregnated with seawater or paraffin oil.


thermoplastic polyurethane elastomer multiwalled carbon nanotube composite underwater application mechanical strength swelling ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    G. M. Stack, J. M. Miller, and E. Y. Chang, J. Appl. Polym. Sci., 42, 911 (1991).CrossRefGoogle Scholar
  2. (2).
    R. N. Capps, J. Acoust. Soc. Am., 78, 406 (1985).CrossRefGoogle Scholar
  3. (3).
    R. Y. Ting, Elastomerics, 117, 29 (1985).Google Scholar
  4. (4).
    J. L. Lastinger, U.S. NRL Memorandum report 2363 (1971).Google Scholar
  5. (5).
    H. G. Im, K. R. Ka, and C. K. Kim, Ind. Eng. Chem. Res., 49, 7336 (2010).CrossRefGoogle Scholar
  6. (6).
    E. S. Jang, S. B. Khan, and J. Seo, Macromol. Res., 19, 1006 (2011)CrossRefGoogle Scholar
  7. (7).
    T. S. Ramotowski, US Patent 2007/0265384 A1 (2007).Google Scholar
  8. (8).
    A. L. Carpenter, US Patent 5,272,679 (1992).Google Scholar
  9. (9).
    D. C. Evans, US Patent 7,322,379 (2008).Google Scholar
  10. (10).
    M. Arroyo, M. A. López-Manchado, and B. Herrero, Polymer, 44, 2447 (2003).CrossRefGoogle Scholar
  11. (11).
    M. A. López-Manchado, B. Herrero, and M. Arroyo, Polym. Int., 52, 1070 (2003).CrossRefGoogle Scholar
  12. (12).
    J. T. Choi, D. H. Kim, K. S. Ryu, H. Lee, H. M. Jeong, C. M. Shin, J. H. Kim, and B. K. Kim, Macromol. Res., 19, 809 (2011).CrossRefGoogle Scholar
  13. (13).
    C. G. Javier, R. Haris, V. Raquel, T. Shigeyuki, B. S. Hsiao, E. P. Giannelis, and M. A. Manchado, Macromolecules, 41, 6763 (2008).CrossRefGoogle Scholar
  14. (14).
    E. M. Wong, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971 (1997).CrossRefGoogle Scholar
  15. (15).
    A. Das, K. W. Stockelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Kluppel, and G. Heinrich, Polymer, 49, 5276 (2008).CrossRefGoogle Scholar
  16. (16).
    M. A. López-Manchado, J. Biagiotti, L. Valentini, and J. M. Kenny, J. Appl. Polym. Sci., 92, 3394 (2004).CrossRefGoogle Scholar
  17. (17).
    M. D. Frogley, D. Ravich, and H. D. Wagner, Compos. Sci. Technol., 63, 1647 (2003).CrossRefGoogle Scholar
  18. (18).
    T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, Science, 296, 519 (2002).CrossRefGoogle Scholar
  19. (19).
    M. Moaddeb and W. J. Koros, J. Memb. Sci., 125, 143 (1997).CrossRefGoogle Scholar
  20. (20).
    C. Hibshman, C. J. Cornelius, and E. Marand, J. Memb. Sci., 211, 25 (2003).CrossRefGoogle Scholar
  21. (21).
    K. H. Kim and W. H. Jo, Macromolecules, 40, 3708 (2007).CrossRefGoogle Scholar
  22. (22).
    S. H. Lee, E. N. R. Cho, S. H. Jeon, and J. R. Youn, Carbon, 45, 2810 (2007).CrossRefGoogle Scholar
  23. (23).
    S. H. Jin, C. H. Kang, K. H. Yoon, D. S. Bang, and Y. Park, J. Appl. Polym. Sci., 111, 1028 (2009).Google Scholar
  24. (24).
    D. Yue, Y. Liu, Z. Shen, and L. Zhang J. Mater. Sci., 41, 2541 (2006).CrossRefGoogle Scholar
  25. (25).
    A. Higuchi, T. Agatsuma, S. Uemiya, T. Kojima, K. Mizoguchi, I. Pinnau, K. Nagai, and B. D. Freeman, J. Appl. Polym. Sci,. 87, 529 (2000).Google Scholar
  26. (26).
    T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, A. J. Hill, and P. Meakin, Macromolecules, 36, 8406 (2003).CrossRefGoogle Scholar
  27. (27).
    P. Winberg, K. DeSitter, C. Dotremont, S. Mullens, I. F. J. Vankelecom, and F. H. J. Maurer, Macromolecules, 38, 3776 (2005).CrossRefGoogle Scholar
  28. (28).
    T. Sainsbury and D. Fitzmaurice, Chem. Mater., 16, 3780 (2004).CrossRefGoogle Scholar
  29. (29).
    Y. K. Kim and D. H. Min, Carbon, 48, 4283 (2010).CrossRefGoogle Scholar
  30. (30).
    B. X. Yang, J. H. Shi, K. P. Pramoda, and S. H. Goh, Compos. Sci. Technol., 68, 2490 (2008).CrossRefGoogle Scholar
  31. (31).
    W. S. Choi and S. H. Ryu, Colloids Surf. A: Physicochem. Eng. Asp., 375, 55 (2011).CrossRefGoogle Scholar
  32. (32).
    J. S. Im, E. Jeong, S. J. In, and Y. Lee, Compos. Sci. Technol., 70, 763 (2010).CrossRefGoogle Scholar
  33. (33).
    T. P. Chua, M. Mariatti, A. Azizan, and A. A. Rashid, Compos. Sci. Technol., 70, 671 (2010).CrossRefGoogle Scholar
  34. (34).
    Y. Huang, C. M. Ma, S. Yuen, C. Chuang, H. Kuan, C. Chiang, and S. Wu, Mater. Chem. Phys., 129, 1214 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Chemical Engineering & Materials ScienceChung-Ang UniversitySeoulKorea

Personalised recommendations