Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells


TiO2 multi-electrodes composed of nanoparticles and nanorods were prepared for use as electrodes in dye-sensitized solar cells (DSSC) in an effort to improve the light-to-electricity conversion efficiency. TiO2 nanorods have been successfully prepared via electrospinning methods using a solution containing titanium isopropoxide (TIP). Acetic acid is generally used as a catalyst in sol-gel processes involving TIP; however, acetic acid induces rapid solidification of the sol solution, resulting in clogging of the nozzle during electrospinning, thereby hindering the mass production of TiO2 nanorods. In this work, we introduced acetyl acetone as a new catalyst and optimized the electrospinning conditions of TiO2 nanofibers. The use of acetyl acetone catalysts dramatically extended the solidification time of the TIP sol solution. The DSSC efficiency was improved through the use of TiO2 multi-electrodes.

This is a preview of subscription content, access via your institution.


  1. (1)

    H. Choi, Y. J. Kim, R. S. Varma, and D. D. Dionysiou, Chem. Mater., 18, 5377 (2006).

    Article  CAS  Google Scholar 

  2. (2)

    S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 3, 297 (2009).

    Article  CAS  Google Scholar 

  3. (3)

    W. H. Baek, I. Seo, T. S. Yoon, H. H. Lee, C. M. Yun, and Y. S. Kim, Sol. Energy Mater. Sol. Cells, 93, 1587 (2009).

    Article  CAS  Google Scholar 

  4. (4)

    M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology, 15, 1861 (2004).

    Article  CAS  Google Scholar 

  5. (5)

    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).

    Article  CAS  Google Scholar 

  6. (6)

    Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, and S. Yanagida, Phys. Chem. Chem. Phys., 7, 4157 (2005).

    Article  CAS  Google Scholar 

  7. (7)

    M. D. Wei, Y. Konishi, H. S. Zhou, H. Sugihara, and H. Arakawa, J. Electrochem. Soc., 153, A1232 (2006).

    Article  CAS  Google Scholar 

  8. (8)

    N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gräetzel, J. Am. Ceram. Soc., 110, 1216 (1988).

    Article  CAS  Google Scholar 

  9. (9)

    B. O’Regan and M. Grätzel, Nature, 353, 737 (1991).

    Article  Google Scholar 

  10. (10)

    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).

    Article  CAS  Google Scholar 

  11. (11)

    M. Song, J. S. Park, Y. H. Kim, M. A. Karim, S.-H. Jin, R. S. Ree, Y. R. Cho, Y.-S. Gal, and J. W. Lee, Macromol. Res., 19, 654 (2011).

    Article  CAS  Google Scholar 

  12. (12)

    A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, Surf. Interface Anal., 38, 473 (2006).

    Article  CAS  Google Scholar 

  13. (13)

    J. Schulz, H. Hohenberg, F. Pflücker, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf, V. Wendel, H. Gers-Barlag, and K. P. Wittern, Adv. Drug Deliv. Rev., 54, 157 (2002).

    Article  Google Scholar 

  14. (14)

    S. Tursiloadi, H. Imai, and H. Hirashima, J. Non-Cryst. Solids, 350, 271 (2004).

    Article  CAS  Google Scholar 

  15. (15)

    M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 126, 14943 (2004).

    Article  CAS  Google Scholar 

  16. (16)

    B. Liu and E.S. Aydil, J. Am. Chem. Soc., 131, 3985 (2009).

    Article  CAS  Google Scholar 

  17. (17)

    S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, Electrochemistry, 70, 418 (2002).

    CAS  Google Scholar 

  18. (18)

    J.-K. Oh, J.-K. Lee, H.-S. Kim, S.-B. Han, and K.-W. Park, Chem. Mater., 22, 1114 (2010).

    Article  CAS  Google Scholar 

  19. (19)

    K. Asagoe, Y. Suzuki, S Ngamsinlapasathian, and S Yoshikawa, J. Phys. Conf. Ser., 61, 1112 (2007).

    Article  CAS  Google Scholar 

  20. (20)

    V. S. Saji and M. Pyo, Thin Solid Films, 518, 6542 (2010).

    Article  CAS  Google Scholar 

  21. (21)

    M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, and J.-P. Ahn, Appl. Phys. Lett., 87, 113113 (2005).

    Article  Google Scholar 

  22. (22)

    K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Nanotechnology, 18, 365709 (2007).

    Article  Google Scholar 

  23. (23)

    D. Li and Y. Xia, Nano Lett., 3, 555 (2003).

    Article  CAS  Google Scholar 

  24. (24)

    R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys., 102, 111101 (2007).

    Article  Google Scholar 

  25. (25)

    S.-H. Park, H.-J. Choi, S.-B. Lee, S.-M. Lee, S.-E. Cho, K.-H. Kim, Y.-K. Kim, M.-R. Kim, and J.-K. Lee, Macromol. Res., 19, 142 (2011).

    Article  CAS  Google Scholar 

  26. (26)

    M. W. Jung, H. J. Oh, J. C. Yang, and Y. G. Shul, Bull. Korean Chem. Soc., 20, 1394 (1999).

    CAS  Google Scholar 

  27. (27)

    H.-J. Chen, L. Wang, and W.-Y. Chiu, Mater. Chem. Phys., 101, 12 (2007).

    Article  CAS  Google Scholar 

  28. (28)

    C. Tekmen, A. Suslu, and U. Cocen, Mater. Lett., 62, 4470 (2008).

    Article  CAS  Google Scholar 

  29. (29)

    R. Parra, M. S. Góes, M. S. Castro, E. Longo, P. R. Bueno, and J. A. Varela, Chem. Mater., 20, 143 (2008).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jooyong Kim or Jeong Ho Cho.

Additional information

Y. D. Park and K. Anabuki contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, Y.D., Anabuki, K., Kim, S. et al. Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21, 636–640 (2013). https://doi.org/10.1007/s13233-013-1066-x

Download citation


  • TiO2 nanorod
  • electrospinning
  • dye-sensitized solar cells (DSSC)
  • sol-gel process
  • acetyl acetone