Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells

  • 535 Accesses

  • 15 Citations


TiO2 multi-electrodes composed of nanoparticles and nanorods were prepared for use as electrodes in dye-sensitized solar cells (DSSC) in an effort to improve the light-to-electricity conversion efficiency. TiO2 nanorods have been successfully prepared via electrospinning methods using a solution containing titanium isopropoxide (TIP). Acetic acid is generally used as a catalyst in sol-gel processes involving TIP; however, acetic acid induces rapid solidification of the sol solution, resulting in clogging of the nozzle during electrospinning, thereby hindering the mass production of TiO2 nanorods. In this work, we introduced acetyl acetone as a new catalyst and optimized the electrospinning conditions of TiO2 nanofibers. The use of acetyl acetone catalysts dramatically extended the solidification time of the TIP sol solution. The DSSC efficiency was improved through the use of TiO2 multi-electrodes.

This is a preview of subscription content, log in to check access.


  1. (1)

    H. Choi, Y. J. Kim, R. S. Varma, and D. D. Dionysiou, Chem. Mater., 18, 5377 (2006).

  2. (2)

    S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics, 3, 297 (2009).

  3. (3)

    W. H. Baek, I. Seo, T. S. Yoon, H. H. Lee, C. M. Yun, and Y. S. Kim, Sol. Energy Mater. Sol. Cells, 93, 1587 (2009).

  4. (4)

    M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, Nanotechnology, 15, 1861 (2004).

  5. (5)

    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).

  6. (6)

    Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, and S. Yanagida, Phys. Chem. Chem. Phys., 7, 4157 (2005).

  7. (7)

    M. D. Wei, Y. Konishi, H. S. Zhou, H. Sugihara, and H. Arakawa, J. Electrochem. Soc., 153, A1232 (2006).

  8. (8)

    N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gräetzel, J. Am. Ceram. Soc., 110, 1216 (1988).

  9. (9)

    B. O’Regan and M. Grätzel, Nature, 353, 737 (1991).

  10. (10)

    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).

  11. (11)

    M. Song, J. S. Park, Y. H. Kim, M. A. Karim, S.-H. Jin, R. S. Ree, Y. R. Cho, Y.-S. Gal, and J. W. Lee, Macromol. Res., 19, 654 (2011).

  12. (12)

    A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, and R. Stevens, Surf. Interface Anal., 38, 473 (2006).

  13. (13)

    J. Schulz, H. Hohenberg, F. Pflücker, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf, V. Wendel, H. Gers-Barlag, and K. P. Wittern, Adv. Drug Deliv. Rev., 54, 157 (2002).

  14. (14)

    S. Tursiloadi, H. Imai, and H. Hirashima, J. Non-Cryst. Solids, 350, 271 (2004).

  15. (15)

    M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 126, 14943 (2004).

  16. (16)

    B. Liu and E.S. Aydil, J. Am. Chem. Soc., 131, 3985 (2009).

  17. (17)

    S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, Electrochemistry, 70, 418 (2002).

  18. (18)

    J.-K. Oh, J.-K. Lee, H.-S. Kim, S.-B. Han, and K.-W. Park, Chem. Mater., 22, 1114 (2010).

  19. (19)

    K. Asagoe, Y. Suzuki, S Ngamsinlapasathian, and S Yoshikawa, J. Phys. Conf. Ser., 61, 1112 (2007).

  20. (20)

    V. S. Saji and M. Pyo, Thin Solid Films, 518, 6542 (2010).

  21. (21)

    M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, and J.-P. Ahn, Appl. Phys. Lett., 87, 113113 (2005).

  22. (22)

    K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Nanotechnology, 18, 365709 (2007).

  23. (23)

    D. Li and Y. Xia, Nano Lett., 3, 555 (2003).

  24. (24)

    R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys., 102, 111101 (2007).

  25. (25)

    S.-H. Park, H.-J. Choi, S.-B. Lee, S.-M. Lee, S.-E. Cho, K.-H. Kim, Y.-K. Kim, M.-R. Kim, and J.-K. Lee, Macromol. Res., 19, 142 (2011).

  26. (26)

    M. W. Jung, H. J. Oh, J. C. Yang, and Y. G. Shul, Bull. Korean Chem. Soc., 20, 1394 (1999).

  27. (27)

    H.-J. Chen, L. Wang, and W.-Y. Chiu, Mater. Chem. Phys., 101, 12 (2007).

  28. (28)

    C. Tekmen, A. Suslu, and U. Cocen, Mater. Lett., 62, 4470 (2008).

  29. (29)

    R. Parra, M. S. Góes, M. S. Castro, E. Longo, P. R. Bueno, and J. A. Varela, Chem. Mater., 20, 143 (2008).

Download references

Author information

Correspondence to Jooyong Kim or Jeong Ho Cho.

Additional information

Y. D. Park and K. Anabuki contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, Y.D., Anabuki, K., Kim, S. et al. Fabrication of stable electrospun TiO2 nanorods for high-performance dye-sensitized solar cells. Macromol. Res. 21, 636–640 (2013). https://doi.org/10.1007/s13233-013-1066-x

Download citation


  • TiO2 nanorod
  • electrospinning
  • dye-sensitized solar cells (DSSC)
  • sol-gel process
  • acetyl acetone