Skip to main content
Log in

Catalytic behavior of silyl-amide complexes for lactide polymerization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of silyl-amide complexes (=M{N(SiMe3)2}2) were examined as the catalysts for the ring-opening polymerization (ROP) of L-lactide. The catalytic activity of the silyl-amide complexes for zinc was compared with that of the silyl-amide complexes of tin in order to clarify the structural effects on the catalytic behavior. In the tin complexes, the addition of 1-dodecanol made the polymerization rate of L-lactide faster and suppressed the initiation with the N(SiMe3)2 ligands. The 1H NMR analysis revealed that the rates of ligand exchange for the N(SiMe3)2 and 1-dodecanol are different between the zinc and tin complexes. Based on this finding, melt polymerizations of L-lactide was conducted with the zinc catalyst to synthesize high-molecular-weight poly(L-lactide). The M n of the obtained polymer was found to become higher than 60,000 Da, which is required for the industrial application of polylactide, in a short reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Chisholm, J. C. Gallucci, and C. Krempner, Polyhedron, 26, 4436 (2007).

    Article  CAS  Google Scholar 

  2. A. Grafov, S. Vuorinen, T. Repo, M. Kemell, M. Nieger, and M. Leskela, Eur. Polym. J., 44, 3797 (2008).

    Article  CAS  Google Scholar 

  3. A. P. Gupta and Vimal Kumar, Eur. Polym. J., 43, 4053 (2007).

    Article  CAS  Google Scholar 

  4. M. J. Stanford and A. P. Dove, Chem. Soc. Rev., 39, 486 (2010).

    Article  CAS  Google Scholar 

  5. C. M. Thomas, Chem. Soc. Rev., 39, 165 (2010).

    Article  CAS  Google Scholar 

  6. H. I. Kim, K. Ishihara, S. Lee, J. H. Seo, H. Y. Kim, D. Sub, M. U. Kim, T. Konno, M. Takai, and J. S. Seo, Biomaterials, 32, 2241 (2011).

    Article  CAS  Google Scholar 

  7. D. Ishii, T. H. Ying, A. Mahara, S. Murakami, T. Yamaoka, W. K. Lee, and T. Iwata, Biomacromolecules 10, 237 (2009).

    Article  CAS  Google Scholar 

  8. M. Penco, R. Donetti, R. Mendrichi, and P. Ferruti, Macromol. Chem. Phys., 199, 1737 (1998).

    Article  CAS  Google Scholar 

  9. A. Smith and I. M. Hunneyball, Int. J. Pharm., 30, 215 (1986).

    Article  CAS  Google Scholar 

  10. A. P. Pego, B. Siebum, M. J. A. Van Luyn, K. J. Gellego, Y. Van Seijen, A. A. Poot, D. W. Grijpma, and J. Feijen, Tissue Eng., 9, 981 (2003).

    Article  CAS  Google Scholar 

  11. J. J. Marler, J. Upton, R. Langer, and J. P. Vacanti, Adv. Drug Deliv. Rev., 33, 165 (1998).

    Article  CAS  Google Scholar 

  12. M. H. Chisholm and N. W. Eilerts, Chem. Commun., 853 (1996).

  13. M. H. Chisholm, N. W. Eilerts, J. C. Huffman, S. S. Iyer, M. Pacold, and K. Phomphrai, J. Am. Chem. Soc., 122, 11845 (2000).

    Article  CAS  Google Scholar 

  14. M. Cheng, T. M. Ovitt, P. D. Hustad, and G. W. Coates, Polymer Prepr., 40, 542 (1999).

    CAS  Google Scholar 

  15. M. Cheng, A. B. Attygalle, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc., 121, 11583 (1999).

    Article  CAS  Google Scholar 

  16. B. M. Chamberlain, M. Cheng, and D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc., 123, 3229 (2001).

    Article  CAS  Google Scholar 

  17. M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 44, 8004 (2005).

    Article  CAS  Google Scholar 

  18. M. H. Chisholm, J. C. Gallucci, and K. Phomphrai, Inorg. Chem., 43, 6717 (2004).

    Article  CAS  Google Scholar 

  19. D. J. Darensbourg, W. Choi, O. Karroonnirun, and N. Bhuvanesh, Macromolecules, 41, 3493 (2008).

    Article  CAS  Google Scholar 

  20. H. Ma and J. Okuda, Macromolecules, 38, 2665 (2005).

    Article  CAS  Google Scholar 

  21. A. Amgoune, C. M. Thomas, T. Roisnel, and J. -F. Carpentier, Chem. Eur. J., 12, 169 (2006).

    Article  CAS  Google Scholar 

  22. M. Westerhausen, Inorg. Chem., 30, 96 (1991).

    Article  CAS  Google Scholar 

  23. S. C. Goel, M. Y. Chiang, and W. B. Buhro, Inorg. Chem., 29, 4646 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Woo Lee or Yoshiharu Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.W., Kuno, S. & Kimura, Y. Catalytic behavior of silyl-amide complexes for lactide polymerization. Macromol. Res. 21, 385–391 (2013). https://doi.org/10.1007/s13233-013-1033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1033-6

Keywords

Navigation