Skip to main content
Log in

Thermorheological complexity of a dynamically asymmetric miscible blend: the improving role of Na+-MMT nanoclay

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The influence for the minor amount of sodium montmorillonite (Na+-MMT) nanoclay on the thermorheological complexity of a miscible blend of 20 wt% poly(ethylene oxide) (PEO) in poly(methyl methacrylate) (PMMA) is studied. The dispersion of Na+-MMT in the PEO/PMMA is assessed via X-ray diffraction. The empirical principle of time-temperature superposition is found to be partially restored in the case of blend nanocomposite, whereas it fails for the neat PEO/PMMA blend. The relaxation times of each component are determined from the oscillatory shear rheometry data in the form of a monomeric friction coefficient. The chain dynamics of components is coupled in the presence of hydrophilic nanoclay, which preferentially adsorbs PEO. The self-concentration model of Lodge and McLeish successfully describes the temperature dependence of the PMMA monomeric friction coefficient in both the neat and blend nanocomposite in regards to the temperature range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Colby, Polymer, 30, 1275 (1989).

    Article  CAS  Google Scholar 

  2. J. Roovers and P. M. Toporowski, Macromolecules, 25, 3454 (1992).

    Article  CAS  Google Scholar 

  3. J. Roovers and P. M. Toporowski, Macromolecules, 25, 1096 (1992).

    Article  CAS  Google Scholar 

  4. J. A. Pathak, R. H. Colby, G. Floudas, and R. Jerome, Macromolecules, 32, 2553 (1999).

    Article  CAS  Google Scholar 

  5. C. A. Trask and C. M. Roland, Macromolecules, 22, 256 (1989).

    Article  CAS  Google Scholar 

  6. Y. He, T. R. Lutz, M. D. Ediger, M. Pitsikalis, N. Hadjichristidis, and E. D. von Meerwall, Macromolecules, 38, 6216 (2005).

    Article  CAS  Google Scholar 

  7. J. C. Haley and T. P. Lodge, J. Chem. Phys., 122, 234914 (2005).

    Article  Google Scholar 

  8. J. C. Haley, T. P. Lodge, Y. He, M. D. Ediger, E. D. von Meerwal, and J. Mijovic, Macromolecules, 36, 6142 (2003).

    Article  CAS  Google Scholar 

  9. J. B. Miller, K. J. McGrath, C. M. Roland, C. A. Trask, and A. N. Garroway, Macromolecules, 23, 4543 (1990).

    Article  CAS  Google Scholar 

  10. G. C. Chung, J. A. Kornfield, and S. D. Smith, Macromolecules, 27, 964 (1994).

    Article  CAS  Google Scholar 

  11. A. Alegria, J. Colmenero, K. L. Ngai, and C. M. Roland, Macromolecules, 27, 4486 (1994).

    Article  CAS  Google Scholar 

  12. C. M. Roland and K. L. Ngai, J. Rheol., 36, 1691 (1992).

    Article  CAS  Google Scholar 

  13. K. L. Ngai and D. J. Plazek, Macromolecules, 23, 4282 (1990).

    Article  CAS  Google Scholar 

  14. S. K. Kumar, R. H. Colby, S. H. Anastasiadis, and G. J. Fytas, J. Chem. Phys., 105, 3777 (1996).

    Article  CAS  Google Scholar 

  15. T. P. Lodge and T. C. B. McLeish, Macromolecules, 33, 5278 (2000).

    Article  CAS  Google Scholar 

  16. M. D. Ediger, T. R. Lutz, and Y. He, J. Non-Cryst. Solids, 352, 4718 (2006).

    Article  CAS  Google Scholar 

  17. J. C. Haley and T. P. Lodge, J. Colloid Polym. Sci., 282, 793 (2004).

    Article  CAS  Google Scholar 

  18. I. Hopkinson, F. T. Kiff, R. W. Richards, S. M. King, and T. Farren, Polymer, 36, 3523 (1995).

    Article  CAS  Google Scholar 

  19. H. Ito, T. P. Russell, and G. D. Wignall, Macromolecules, 20, 2213 (1987).

    Article  CAS  Google Scholar 

  20. M. Dionísio, A. C. Fernandes, J. F. Mano, N. T. Correia, and R. C. Sousa, Macromolecules, 33, 1002 (2000).

    Article  Google Scholar 

  21. A.-C. Genix, A. Arbe, F. Alvarez, J. Colmenero, L. Willner, and D. Richter, J. Phys. Rev. E, 72,(031808) 1 (2005).

    Google Scholar 

  22. J. A. Zawada, C. M. Ylitalo, G. G. Fuller, R. H. Colby, and T. E. Long, Macromolecules, 25, 2896 (1992).

    Article  CAS  Google Scholar 

  23. I. Zeroni, S. Ozair, and T. P. Lodge, Macromolecules, 41, 5033 (2008).

    Article  CAS  Google Scholar 

  24. A. C. Fernandes, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 32, 5481 (1986).

    Article  CAS  Google Scholar 

  25. C. Silvestre, S. Cimmino, E. Martuscelli, F. E. Karasz, and W. J. MacKnight, Polymer, 28, 1190 (1987).

    Article  CAS  Google Scholar 

  26. T. R. Lutz, Y. He, M. D. Ediger, H. Cao, G. Lin, and A. A. Jones, Macromolecules, 36, 1724 (2003).

    Article  CAS  Google Scholar 

  27. S. Zhang, P. C. Painter, and J. Runt, Macromolecules, 35, 8478 (2002).

    Article  CAS  Google Scholar 

  28. A. N. Gaikwad, A. Choperena, P. C. Painter, and T. P. Lodge, Macromolecules, 43, 4814 (2010).

    Article  CAS  Google Scholar 

  29. Y. S. Lipatov, A. E. Nesterov, T. D. Ignatova, and D. A. Nesterov, Polymer, 43, 875 (2002).

    Article  CAS  Google Scholar 

  30. A. E. Nesterov and Y. S. Lipatov, Polymer, 40, 1347 (1999).

    Article  CAS  Google Scholar 

  31. Y. Wang, Q. Zhang, and Q. Fu, Macromol. Rapid Commun., 2003, 24, 231 (2003).

    Google Scholar 

  32. V. V. Ginzburg, Macromolecules, 38, 2362 (2005).

    Article  CAS  Google Scholar 

  33. Q. Fu, Q. Zhang, and H. Yang, Polymer, 45, 1913 (2004).

    Article  Google Scholar 

  34. M. Si, T. Araki, H. Ade, A. L. D. Kilcoyne, R. Fisher, J. C. Sokolov, and M. H. Rafailovich, Macromolecules, 39, 4793 (2006).

    Article  CAS  Google Scholar 

  35. A. Gharachorlou and F. Goharpey, Macromolecules, 41, 3276 (2008).

    Article  CAS  Google Scholar 

  36. T. Xia, Y. Huang, X. Peng, and G. Li, J. Macromol. Chem. Phys., 211, 2240 (2010).

    Article  CAS  Google Scholar 

  37. M. Ghelichi, N. T. Qazvini, S. H. Jafari, H. A. Khonakdar, and U. Reuter, J. Polym. Res., 19, 9830 (2012).

    Article  Google Scholar 

  38. J. A. Pathak, R. H. Colby, S. Y. Kamath, S. K. Kumar, and R. Stadler, Macromolecules, 31, 8988 (1998).

    Article  CAS  Google Scholar 

  39. M. Van Gurp and J. Palmen, J. Rheol. Bull., 67, 5 (1998).

    Google Scholar 

  40. S. S. Es-haghi, A. A. Yousefi, and A. Oromiehie, J. Polym. Sci. Part B: Polym. Phys., 45, 2860 (2007).

    Article  CAS  Google Scholar 

  41. M. J. Struglinski and W. W. Graessley, Macromolecules, 18, 2630 (1985).

    Article  CAS  Google Scholar 

  42. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, Oxford, 1986.

    Google Scholar 

  43. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980

    Google Scholar 

  44. B. H. Arendt, R. Krishnamoorti, J. A. Kornfield, and S. D. Smith, Macromolecules, 30, 1127 (1997).

    Article  CAS  Google Scholar 

  45. S. Wu, J. Polym. Sci. Part B: Polym. Phys., 27, 723 (1989).

    Article  CAS  Google Scholar 

  46. P. Lomellini and L. Lavagnini, Rheol. Acta, 31, 175 (1992).

    Article  CAS  Google Scholar 

  47. J. W. Chung, S. J. Han, and S.-Y. Kwak, Compos. Sci. Technol., 68, 1555 (2008).

    Article  CAS  Google Scholar 

  48. J. Y. Nam, S. S. Ray, and M. Okamoto, Macromolecules, 36, 7126 (2003).

    Article  CAS  Google Scholar 

  49. Q. Zhang and L. A. Archer, Langmuir, 18, 10435 (2002).

    Article  CAS  Google Scholar 

  50. R. A. Riggleman, G. T. Toepperwein, J. Papakonstantopouplos, J.-L. Barret, and J. J. de Pablo, J. Chem. Phys., 130, 244903 (2009).

    Article  Google Scholar 

  51. Y. Miwa, A. R. Drews, and S. Schlick, Macromolecules, 39, 3304 (2006).

    Article  CAS  Google Scholar 

  52. C. Lorthioir, F. Lauprêtre, J. Soulestin, and J.-M. Lefebvre, Macromolecules, 42, 218 (2009).

    Article  CAS  Google Scholar 

  53. Z. Shen, Y.-B. Cheng, and G. P. Simon, Macromolecules, 38, 1744 (2005).

    Article  CAS  Google Scholar 

  54. S. H. Zhang, X. Jin, P. C. Painter, and J. Runt, Macromolecules, 36, 5710 (2003).

    Article  CAS  Google Scholar 

  55. Y. He, T. R. Lutz, and M. D. Ediger, J. Chem. Phys., 119, 9956 (2003).

    Article  CAS  Google Scholar 

  56. T. P. Lodge, E. R. Wood, and J. C. Haley, J. Polym. Sci. Part B: Polym. Phys., 44, 756 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Taheri Qazvini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghelichi, M., Qazvini, N.T., Jafari, S.H. et al. Thermorheological complexity of a dynamically asymmetric miscible blend: the improving role of Na+-MMT nanoclay. Macromol. Res. 21, 362–369 (2013). https://doi.org/10.1007/s13233-013-1018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1018-5

Keywords

Navigation