Skip to main content
Log in

Investigation on the thermal oxidative aging mechanism and lifetime prediction of butyl rubber

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Accelerated thermal aging experiments were conducted on butyl rubber materials in order to investigate aging behavior using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), positron annihilation lifetime spectroscopy (PALS), and differential scanning calometry (DSC). The XPS results suggested that the thermal oxidation process took place heterogeneously along the samples thicknesses. The aging mechanism was identified to be crosslinking by means of the combined use of PALS and DSC results. Lifetime and intensity of ortho-positronium (o-ps) diminished, and the glass transition temperature (T g ) increased during aging. The dispersion condition of silica particles, observed by SEM images, showed that the filler agglomerated after aging. Time temperature superposition was carried out using compression set measurements in the temperature range of 100 to 60 °C. The Arrhenius plot clearly exhibited a curvature around 75 °C, and the activation energy dropped from 126.7 to 58.8 kJ/mol across this region. Relative importance of different processes, over the entire temperature range, was discussed; lifetime at room temperature was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. T. Gillen, M. Celina, R. Bernstein, and M. Shedd, Polym Degrad. Stab., 91, 3197 (2006).

    Article  CAS  Google Scholar 

  2. P. Burugeac, Polym. Degrad. Stab., 47, 129 (1995).

    Article  Google Scholar 

  3. S. Kahlen, G. M. Wallner, and R. W. Lang, Solar Energy, 84, 755 (2010).

    Article  CAS  Google Scholar 

  4. J. Wise, K. T. Gillen, and R. L. Clough, Polym. Degrad. Stab., 49, 403 (1995).

    Article  CAS  Google Scholar 

  5. K. T. Gillen, R. A. Assink, and R. Bernstein, Polym. Degrad. Stab., 84, 419 (2004).

    Article  CAS  Google Scholar 

  6. K. T. Gillen, R. A. Assink, R. Bernstein, and M. Celina, Polym. Degrad. Stab., 91, 1273 (2006).

    Article  CAS  Google Scholar 

  7. M. Celina, J. M. S. Elliott, S. T. Winters, R. A. Assink, and L. M. Minier, Polym. Degrad. Stab., 91, 1870 (2006).

    Article  CAS  Google Scholar 

  8. K. T. Gillen, M. Celina, and R. Bernstein, Polym. Degrad. Stab., 82, 25 (2003).

    Article  CAS  Google Scholar 

  9. P. R. Morrell, M. Patel, and A. R. Skinner, Polym. Test., 22, 651 (2003).

    Article  CAS  Google Scholar 

  10. M. Patel and A. R. Skinner, Polym. Degrad. Stab., 73, 399 (2001).

    Article  CAS  Google Scholar 

  11. T. W. Dakin, Electra-Technol., 66, 123 (1960).

    Google Scholar 

  12. T. W. Dakin, Trans. AIEE, 67, 113 (1984).

    Google Scholar 

  13. N. C. Billingham, D. C. Bott, and A. S. Manke, in Developments in Polymer Degradation, N. Grassie, Ed., Applied Science, London, 1981, p 63.

    Google Scholar 

  14. J. B. Howard and H. M. Gilroy, Polym. Eng. Sci., 15, 26 (1975).

    Article  Google Scholar 

  15. F. Gugumus, Polym. Degrad. Stab., 63, 41 (1999).

    Article  CAS  Google Scholar 

  16. L. Achimsky, L. Audouin, J. Verdu, J. Rychly, and L. Matisova-Rychla, Polym. Degrad. Stab., 58, 283 (1997).

    Article  CAS  Google Scholar 

  17. R. L. Clough and K. T. Gillen, Polym. Degrad. Stab., 38, 47 (1992).

    Article  CAS  Google Scholar 

  18. B. Mattson and B. Stenberg, Polym. Degrad. Stab., 41, 211 (1993).

    Article  CAS  Google Scholar 

  19. K. T. Gillen and R. L. Clough, Polymer, 33, 4358 (1992).

    Article  CAS  Google Scholar 

  20. J. Wise and K. T. Gillen, Polymer, 38, 1929 (1997).

    Article  CAS  Google Scholar 

  21. J. Wise and K. T. Gillen, Radiat. Phys. Chem., 49, 565 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, K., Huang, G., Zheng, J. et al. Investigation on the thermal oxidative aging mechanism and lifetime prediction of butyl rubber. Macromol. Res. 21, 10–16 (2013). https://doi.org/10.1007/s13233-012-0174-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0174-3

Keywords

Navigation