Skip to main content
Log in

Conformational dynamics of sub-micron sized wormlike polyelectrolyte polymer in flow fields

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Conformational dynamics of a single chain of wormlike polyelectrolyte xanthan polymer has been investigated in the external flow fields by employing a well-suited coarse-grained Brownian dynamics simulation. This goes beyond other simulations, which do not consider the hydrodynamic interaction between pairs of beads in polyelectrolyte polysaccharide and the long-range electrostatic screening effect. Conformational properties, such as the radius of gyration and the static structure factor, were unchanged with the flow strength parameter (i.e., Weissenberg number) in the uniform flow. However, influences by flow strength as well as flow type were evident in both simple shear and extensional-like flows with non-zero velocity gradients in flow regimes, commonly exhibiting a sigmoidal transition in the radius of gyration. Transition to a higher plateau, and independence of long-range electrostatic screening on chain conformation, can be encountered earlier with increasing flow strength, as a special feature of a polyelectrolyte in extensional-like flow. The translational self-diffusion coefficient increases when increasing either the flow strength or the electrostatic screening effect in uniform and simple shear flows. Scaling behavior of the static structure factor is quite well-correlated with respect to each flow field, where the Flory-Edwards exponent (ν) decreases with higher values of flow strength and flow type parameters, but for lower screening effect. Present results on the mesoscopic scale devoted to the bulk space can readily serve as the basis for further scrutiny of the behavior of wormlike polyelectrolytes within various flow fields in confined spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Daoud and P.-G. de Gennes, J. Phys. France, 38, 85 (1977).

    Article  CAS  Google Scholar 

  2. K. Kremer and K. Binder, Comput. Phys. Rep., 7, 259 (1988).

    Article  CAS  Google Scholar 

  3. J. H. van Vliet and G. ten Brinke, J. Chem. Phys., 93, 1436 (1990).

    Article  Google Scholar 

  4. J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys., 94, 1 (1996).

    Article  CAS  Google Scholar 

  5. C. Holm, P. Këkicheff, and R. Podgornik, Eds., in NATO Science Series II-Mathematics, Physics and Chemistry, Kluwer Publishers, Dordrecht, 2001, Vol 46.

    Google Scholar 

  6. A. Balducci, P. Mao, J. Han, and P. S. Doyle, Macromolecules, 39, 6273 (2006).

    Article  CAS  Google Scholar 

  7. P.-K. Lin, C.-C. Fu, Y.-L. Chen, Y.-R. Chen, P.-K. Wei, C. H. Kuan, and W. S. Fann, Phys. Rev. E, 76, 011806 (2007).

    Article  Google Scholar 

  8. H. C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms, Springer, Heidelberg, 1996.

    Google Scholar 

  9. S. R. Rastogi and N. J. Wagner, J. Chem. Phys., 104, 9234 (1996).

    Article  CAS  Google Scholar 

  10. H. A. Jian, V. Vologodskii, and T. Schlick, J. Comput. Phys., 136, 168 (1997).

    Article  CAS  Google Scholar 

  11. J. S. Hur, E. S. G. Shaqfeh, and R. G. Larson, J. Rheol., 44, 713 (2000).

    Article  CAS  Google Scholar 

  12. J. S. Hur, E. S. G. Shaqfeh, H. P. Babcock, D. E. Smith, and S. Chu, J. Rheol., 45, 421 (2001).

    Article  CAS  Google Scholar 

  13. J. S. Lee and J. M. Kim, Macromol. Res., 17, 807 (2009).

    Article  CAS  Google Scholar 

  14. R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, J. Chem. Phys., 116, 7752 (2002).

    Article  CAS  Google Scholar 

  15. R. M. Jendrejack, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, J. Chem. Phys., 119, 1165 (2003).

    Article  CAS  Google Scholar 

  16. R. M. D. Jendrejack, D. C. Schwartz, J. J. de Pablo, and M. D. Graham, J. Chem. Phys., 120, 2513 (2004).

    Article  CAS  Google Scholar 

  17. Y. L. Chen, M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S. Doyle, Phys. Rev. E, 70, 060901R (2004).

    Article  Google Scholar 

  18. P. Sunthar and J. R. Prakash, Macromolecules, 38, 617 (2005).

    Article  CAS  Google Scholar 

  19. J. Jeon and M.-S. Chun, J. Chem. Phys., 126, 154904 (2007).

    Article  Google Scholar 

  20. G. Paradossi and D. A. Brant, Macromolecules, 15, 874 (1982).

    Article  CAS  Google Scholar 

  21. T. Sato, T. Norisuye, and H. Fujita, Macromolecules, 17, 2696 (1984).

    Article  CAS  Google Scholar 

  22. M.-S. Chun, C. Kim, and D. E. Lee, Phys. Rev. E, 79, 051919 (2009).

    Article  Google Scholar 

  23. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.

    Google Scholar 

  24. D. Stein, F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker, Proc. Natl. Acad. Sci. U.S.A., 103, 15853 (2006).

    Article  CAS  Google Scholar 

  25. J. H. Masliyah and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena, John Wiley & Sons, Inc., Hoboken, 2006.

    Book  Google Scholar 

  26. J. M. Victor, J. Chem. Phys., 95, 600 (1991).

    Article  CAS  Google Scholar 

  27. T. A. Vilgis and R. Borsali, Phys. Rev. A, 43, 6857 (1991).

    Article  CAS  Google Scholar 

  28. U. Micka and K. Kremer, Phys. Rev. E, 54, 2653 (1996).

    Article  CAS  Google Scholar 

  29. P.-G. de Gennes, Scaling Concept in Polymer Physics, Cornell University Press, Ithaca, 1979.

    Google Scholar 

  30. M. Rubinstein and R. H. Colby, Polymer Physics, Oxford University Press, Oxford, 2003.

    Google Scholar 

  31. D. L. Ermak and J. A. McCammon, J. Chem. Phys., 69, 1352 (1978).

    Article  CAS  Google Scholar 

  32. J. Rotne and S. Prager, J. Chem. Phys., 50, 4831 (1969).

    Article  CAS  Google Scholar 

  33. H. R. Warner, Ind. Eng. Chem. Fund., 11, 379 (1972).

    Article  CAS  Google Scholar 

  34. A. Dhar and D. Chaudhuri, Phys. Rev. Lett., 89, 065502 (2002).

    Article  Google Scholar 

  35. J.-I. Sohn, C. A. Kim, H. J. Choi, and M. S. Jhon, Carbohydr. Polym., 45, 61 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-Suk Chun or Hyun Wook Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.Y., Chun, MS., Jung, H.W. et al. Conformational dynamics of sub-micron sized wormlike polyelectrolyte polymer in flow fields. Macromol. Res. 20, 1163–1172 (2012). https://doi.org/10.1007/s13233-012-0171-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0171-6

Keywords

Navigation