Skip to main content
Log in

Amino acid-modified bioreducible poly(amidoamine) dendrimers: Synthesis, characterization and In vitro evaluation

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(amidoamine) (PAMAM) dendrimers are synthetic polymers commonly used as carriers in gene and drug delivery. PAMAMs have the ability to transfect DNA, but their transfection efficiency is currently insufficient for clinical use. Here, we demonstrate the synthesis and evaluation of cationic dendrimers consisting of a cystamine core PAMAM generation 3 (cPAM G3) and amino acids. Introduction of histidine (His) and arginine (Arg) residues to cPAM G3 resulted in high transfection efficiency and low cytotoxicity. cPAM G3-His-Arg formed stable polyplexes at a weight ratio of 6:1, and the mean polyplex diameter was 99.03±1.68 nm. Nano-sized polyplexes increased in diameter up to 132.93±1.79 nm when treated with a reducing agent, dithiothreitol (DTT). cPAM G3-His-Arg showed much higher transfection efficiency than native cPAM G3 and polyethylenimine (PEI, 25KD). In addition, cPAM G3-His-Arg displayed negligible toxicity, even at high polymer concentrations. Finally, confocal laser microscopy results showed that cPAM G3-His-Arg effectively internalized plasmid DNA into the cells. Therefore, we believe that cPAM G3-His-Arg could be a promising bioreducible vector for non-viral gene delivery with high gene transfection efficiency and low cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Tomalia and J. M. J. Frechet, J. Polym. Sci. Part A: Polym. Chem., 40, 2719 (2002).

    Article  CAS  Google Scholar 

  2. A. Tomalia D., H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J., 17, 177 (1985).

    Article  Google Scholar 

  3. M. J. Cloninger, Curr. Opin. Chem. Biol., 6, 742 (2002).

    Article  CAS  Google Scholar 

  4. C. C. Lee, J. A. MacKay, J. M. J. Frechet, and F. C. Szoka, Nat. Biotechnol., 23, 1517 (2005).

    Article  CAS  Google Scholar 

  5. V. J. Venditto, C. A. S. Regino, and M. W. Brechbiel, Mol. Pharm., 2, 302 (2005).

    Article  CAS  Google Scholar 

  6. G. Y. Wu and C. H. Wu, J. Biol. Chem., 262, 4429 (1987).

    CAS  Google Scholar 

  7. O. Boussif, F. Lezoualch, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, Proc. Natl. Acad. Sci. U.S.A., 92, 7297 (1995).

    Article  CAS  Google Scholar 

  8. C. W. Pouton and L. W. Seymour, Adv. Drug Deliv. Rev., 46, 187 (2001).

    Article  CAS  Google Scholar 

  9. G. D. Schmidt-Wolf and I. G. H. Schmidt-Wolf, Trends Mol. Med., 9, 67 (2003).

    Article  CAS  Google Scholar 

  10. J. S. Choi, K. Nam, J. Y. Park, J. B. Kim, J. K. Lee, and J. S. Park, J. Control. Release, 99, 445 (2004).

    Article  CAS  Google Scholar 

  11. K. Kono, H. Akiyama, T. Takahashi, T. Takagishi, and A. Harada, Bioconjug. Chem., 16, 208 (2005).

    Article  CAS  Google Scholar 

  12. R. Shukla, T. P. Thomas, J. Peters, A. Kotlyar, A. Myc, and Jr. J. R. Baker, Chem. Commun., 5739 (2005).

  13. D. Luo, K. Haverstick, N. Belcheva, E. Han, and W. M. Saltzman, Macromolecules, 35, 3456 (2002).

    Article  CAS  Google Scholar 

  14. T. Merdan, K. Kunath, H. Petersen, U. Bakowsky, K. H. Voigt, J. Kopecek, and T. Kissel, Bioconjug. Chem., 16, 785 (2005).

    Article  CAS  Google Scholar 

  15. R. B. Kolhatkar, K. M. Kitchens, P. W. Swaan, and H. Ghandehari, Bioconjug. Chem., 18, 2054 (2007).

    Article  CAS  Google Scholar 

  16. G. S. Yu, Y. M. Bae, H. Choi, B. Kong, I. S. Choi, and J. S. Choi, Bioconjug. Chem., 22, 1046 (2011).

    Article  CAS  Google Scholar 

  17. M. A. Gosselin, W. J. Guo, and R. J. Lee, Bioconjug. Chem., 12, 989 (2001).

    Article  CAS  Google Scholar 

  18. K. Miyata, Y. Kakizawa, N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama, and K. Kataoka, J. Am. Chem. Soc., 126, 2355 (2004).

    Article  CAS  Google Scholar 

  19. T. I. Kim, M. Ou, M. Lee, and S. W. Kim, Biomaterials, 30, 658 (2009).

    Article  CAS  Google Scholar 

  20. Q. Peng, Z. L. Zhong, and R. X. Zhuo, Bioconjug. Chem., 19, 499 (2008).

    Article  CAS  Google Scholar 

  21. Y. Lee, H. Mo, H. Koo, J. Y. Park, M. Y. Cho, G. W. Jin, and J. S. Park, Bioconjug. Chem., 18, 13 (2007).

    Article  CAS  Google Scholar 

  22. H. Mok and T. G. Park, Biopolymers, 89, 881 (2008).

    Article  CAS  Google Scholar 

  23. Y. W. Won, H. A. Kim, M. Lee, and Y. H. Kim, Mol. Ther., 18, 734 (2010).

    Article  CAS  Google Scholar 

  24. Y. Kakizawa, A. Harada, and K. Kataoka, Biomacromolecules, 2, 491 (2001).

    Article  CAS  Google Scholar 

  25. H. Mok, J. W. Park, and T. G. Park, Bioconjug. Chem., 18, 1483 (2007).

    Article  CAS  Google Scholar 

  26. C. Lin, Z. Y. Zhong, M. C. Lok, X. L. Jiang, W. E. Hennink, J. Feijen, and J. F. J. Engbersen, Bioconjug. Chem., 18, 138 (2007).

    Article  CAS  Google Scholar 

  27. S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, Mol. Ther., 11, 990 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung Soo Ko or Joon Sig Choi.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, G.S., Bae, Y.M., Kim, J.Y. et al. Amino acid-modified bioreducible poly(amidoamine) dendrimers: Synthesis, characterization and In vitro evaluation. Macromol. Res. 20, 1156–1162 (2012). https://doi.org/10.1007/s13233-012-0164-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0164-5

Keywords

Navigation