Skip to main content
Log in

New highly thermostable aromatic polyamides with pendant phthalonitrile groups

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A phthalonitrile-containing diamine monomer, 4,4′-diamino-4″-(3,4-dicyanophenoxy)-triphenylmethane, 1, was prepared, and its cure behavior was investigated. The diamine 1 was thermally polymerized at 250 °C even in absence of curing additives. The resulting resins exhibited exceptional high thermal and thermo-oxidative stability, with the 5% weight loss being above 500 °C and the char yield at 700 °C being over 62%, in air or inert atmosphere. New soluble aromatic polyamides derived from diamine 1, 2,2-bis[4-(4-aminophenoxy)phenyl]propane and terephthaloyl chloride were synthesized. They showed good solubility in organic solvents, film forming properties, and high thermal stability, with the decomposition temperature being above 400 °C. The kinetic processing of thermogravimetric data was carried out using differential and integral methods. Electrical properties of the polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The influence of the phthalonitrile content on the polymer properties was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Keller, J. Polym. Sci. Part C: Polym. Lett., 24, 211 (1986).

    Article  CAS  Google Scholar 

  2. T. M. Keller and C. M. Roland, US Patent 5242755 (1993).

  3. S. B. Sastri, J. P. Armistead, and T. M. Keller, Polym. Compos., 17, 816 (1996).

    Article  CAS  Google Scholar 

  4. S. B. Sastri, J. P. Armistead, T. M. Keller, and U. Sorathia, Polym. Compos., 18, 48 (1997).

    Article  CAS  Google Scholar 

  5. D. D. Dominguez, Y. N. Jones, and T. M. Keller, Polym. Compos., 25, 554 (2004).

    Article  CAS  Google Scholar 

  6. K. Zeng, K. Zhou, S. Zhou, H. Hong, H. Zhou, Y. Wang, P. Miao, and G. Yang, Eur. Polym. J., 45, 1328 (2009).

    Article  CAS  Google Scholar 

  7. T. M. Keller, J. Polym. Sci. Part A: Polym. Chem., 26, 3199 (1988).

    Article  CAS  Google Scholar 

  8. T. M. Keller, Polymer, 234, 952 (1993).

    Article  Google Scholar 

  9. T. M. Keller, Chem. Mater., 6, 302 (1994).

    Article  CAS  Google Scholar 

  10. S. B. Sastri and T. M. Keller, J. Polym. Sci. A: Polym. Chem., 36, 1885 (1998).

    Article  CAS  Google Scholar 

  11. T. M. Keller and D. D. Dominguez, Polymer, 46, 4614 (2005).

    Article  CAS  Google Scholar 

  12. M. Laskoski, D. D. Dominguez, and T. M. Keller, J. Polym. Sci. Part A: Polym. Chem., 43, 4136 (2005).

    Article  CAS  Google Scholar 

  13. G. P. Cao, W. J. Chen, J. J. Wei, W. T. Li, and X. B. Liu, Exp. Polym. Lett., 1, 512 (2007).

    Article  CAS  Google Scholar 

  14. P. Selvakumar, M. Sarojadevi, and P. Sundararajan, Mater. Sci. Eng. B, 168, 214 (2010).

    Article  CAS  Google Scholar 

  15. P. Selvakumar, K. Padmini, M. Sarojadevi, and M. F. Leelavanthy, J. Macromol. Sci. A, 47, 76 (2010).

    CAS  Google Scholar 

  16. X. Yang, Y. Lei, J. Zhong, R. Zhao, and X. Liu, J. Appl. Polym. Sci., 119, 882 (2011).

    Article  CAS  Google Scholar 

  17. K. Zeng, H. Hong, S. Zhou, D. Wu, P. Miao, Z. Huang, and G. Yang, Polymer, 50, 5002 (2009).

    Article  CAS  Google Scholar 

  18. K. Zeng, K. Zhou, W. R. Tang, Y. Tang, H. F. Zhou, T. Liu, Y. P. Wang, H. B. Zhou, and G. Yang, Chin. Chem. Lett., 18, 523 (2007).

    Article  CAS  Google Scholar 

  19. S. Zhou, H. Hong, K. Zeng, P. Miao, H. Zhou, Y. Wang, T. Liu, C. Zhao, G. Xu, and G. Yang, Polym. Bull., 62, 581 (2009).

    Article  CAS  Google Scholar 

  20. P. Selvakumar and M. Sarojadevi, Macromol. Symp., 277, 190 (2009).

    Article  CAS  Google Scholar 

  21. L. Vollbracht, in Comprehensive Polymer Science, G Allen, B. Bevington, G. V. Eastmond, A. Ledwith, S. Russo, and P. Sigwald, Eds., Pergamon Press, Oxford, 1989, Vol. 5, pp 373–383.

    Google Scholar 

  22. J. Gallini, in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, New York, 2005, Vol. 3, pp 558–584.

    Google Scholar 

  23. Y. S. Negi, U. Razdan, and V. Saran, J. Macromol. Chem. Rev. Macromol. Chem. Phys., C39, 391 (1999).

    Article  CAS  Google Scholar 

  24. J. M. Garcia, F. C. Garcia, F. Serna, and J. L. de la Pena, Prog. Polym. Sci., 35, 623 (2010).

    Article  CAS  Google Scholar 

  25. C. Hamciuc, E. Hamciuc, A. M. Ipate, and L. Okrasa, Polymer, 49, 681 (2008).

    Article  CAS  Google Scholar 

  26. T. Vlad-Bubulac and C. Hamciuc, Polymer, 50, 2220 (2009).

    Article  CAS  Google Scholar 

  27. B. K. Chen, T. M. Chiu, and S. Y. Tsay, J. Appl. Polym. Sci., 94, 382 (2004).

    Article  CAS  Google Scholar 

  28. Y. Chang, C. F. Shu, C. M. Leu, and K. H. Wei, J. Polym. Sci. Part A: Polym. Chem., 41, 3726 (2003).

    Article  CAS  Google Scholar 

  29. G. Socrate, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons, New York, 2004, p 177.

    Google Scholar 

  30. ASTM Test method E698, Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, ASTM International, West Conshohocken, 1984, p 56.

    Google Scholar 

  31. S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340–341, 53 (1999).

    Article  Google Scholar 

  32. METTLER TOLEDO STARe, System Manual for Kinetic Analysis by TGA/DSC.

  33. ASTM Test method E1641, Standard Test Method for Decomposition Kinetics by Thermogravimetry, ASTM Book of Standards, American Society for Testing and Materials, West Conshohocken, 1994, Vol. 14.02, p 1042.

    Google Scholar 

  34. R. Diaz-Calleja, J. de Abajo, and J. G. de la Campa, J. Polym. Sci. Part B: Polym. Phys., 35, 919 (1997).

    Article  CAS  Google Scholar 

  35. H. T. Lee, K. R. Chuang, S. A. Chen, P. K. Wei, J. H. Hsu, and W. Fann, Macromolecules, 28, 7645 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corneliu Hamciuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carja, ID., Hamciuc, C., Hamciuc, E. et al. New highly thermostable aromatic polyamides with pendant phthalonitrile groups. Macromol. Res. 20, 1011–1020 (2012). https://doi.org/10.1007/s13233-012-0147-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0147-6

Keywords

Navigation