Skip to main content
Log in

Molecular weight control of PS spheres using soap free and RITP-soap free emulsion polymerization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The reversible iodine transfer polymerization (RITP) of styrene in the absence of light was carried out using potassium persulfate (KPS) under argon atmosphere at 80 °C for 7 h and the properties of the polymers were compared to those obtained from the soap-free emulsion polymerization (SFEP). The variables were the concentration of KPS and iodine, molar ratios between KPS and iodine, reaction temperatures, and monomer contents. The results showed that the conversion retarded and reached from 99.5% to 82%, the particle size dramatically increased from 0.335 to 1.37 μm, the molecular weight decreased from 183,000 to 66,000 g/mol, and the polydispersity index (PDI) increased from 2.7 to 3.8 for the presence of 2 wt% of KPS and iodine content between 0 and 0.228 mmol, respectively, implying that the molecular weight was controlled and that the particle stability was reduced with iodine as usual. For the effects of the solid content on particle properties, the monomer conversion and the particle size increased, but the molecular weight and PDI decreased with the increased KPS content and [KPS]/[I2] ratio. The highest content was 30 wt% and this was less than that in the presence of sodium dodecyl sulfate (SDS) in the RITP-emulsion and in the absence of SDS in the SFEP. Thus, the use of an emulsifier in the RITP or SFEP was one of the important factors for obtaining the maximum solid content needed for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Gilbert, Emulsion Polymerization: A Mechanistic Approach, Academic Press, London, 1995.

    Google Scholar 

  2. X. Li, M. Huang, J. Zeng, and M. Zhu, Colloids Surf. A: Physicochem. Eng. Asp., 248, 111 (2004).

    Article  CAS  Google Scholar 

  3. X. Li, H. Zhou, and M. Huang, Polymer, 46, 1523 (2005).

    Article  CAS  Google Scholar 

  4. E. S. Daniels, E. D. Sudol, and M. S. El-Aasser, ACS Symp. Ser., 492, 1 (1992).

    Article  Google Scholar 

  5. J. S. Guo, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Part A: Polym. Chem., 27, 691 (1989).

    Article  CAS  Google Scholar 

  6. K. Matyjaszewski and A. H. E. Mueller, Polymer Prepr., 38, 6 (1997).

    CAS  Google Scholar 

  7. K. Matyjaszewski, ACS Symp. Ser., 768, 1 (2000).

    Google Scholar 

  8. J. Tonnar and P. Lacroix-Desmazes, Angew. Chem., 120, 1314 (2008).

    Article  Google Scholar 

  9. B. Bailly, A. Donnenwirth, C. Bartholome, E. Beyou, and E. Bourgeat-Lami, J. Nanomater., 2006, 1 (2006).

    Article  Google Scholar 

  10. R. W. Simms and M. F. Cunningham, Macromol. Symp., 261, 32 (2008).

    Article  CAS  Google Scholar 

  11. M. C. Iovu and K. Matyjaszewski, Macromolecules, 36, 9346 (2003).

    Article  CAS  Google Scholar 

  12. J. Chiefari, R. T. A. Mayadunne, C. L. Moad, G. Moad, E. Rizzardo, A. Postma, M. A. Skidmore, and S. H. Thang, Macromolecules, 36, 2273 (2003).

    Article  CAS  Google Scholar 

  13. H. C. Shin, H. G. Oh, K. Lee, B. H. Lee, and S. Choe, Polymer, 50, 4299 (2009).

    Article  CAS  Google Scholar 

  14. P. Lacroix-Desmazes, R. Severac, and B. Boutevin, Macromolecules, 38, 6299 (2005).

    Article  CAS  Google Scholar 

  15. G. David, C. Boyer, J. Tonnar, B. Ameduri, P. Lacroix-Desmazes, and B. Boutevin, Chem. Rev., 106, 3936 (2006).

    Article  CAS  Google Scholar 

  16. D. S. Trifan and P. D. Bartlett, J. Am. Chem. Soc., 81, 5573 (1959).

    Article  CAS  Google Scholar 

  17. P. Ghosh, A. N. Banerjee, P. S. Mitra, and S. Chakraborty, J. Polym. Sci. Polym. Lett. Ed., 13, 35 (1975).

    Article  CAS  Google Scholar 

  18. J. Tonnar, P. Lacroix-Desmazes, and B. Boutevin, Macromolecules, 40, 186 (2007).

    Article  CAS  Google Scholar 

  19. H. G. Oh, H. C. Shin, H. Jung, B. H. Lee, and S. Choe, J. Colloid Interface Sci., 353, 459 (2011).

    Article  CAS  Google Scholar 

  20. C. S. Chern, Prog. Polym. Sci. (Oxford), 31, 443 (2006).

    Article  CAS  Google Scholar 

  21. W. Chiu and C. Shih, J. Appl. Polym. Sci., 31, 2117 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonja Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, K., Lee, B.H. et al. Molecular weight control of PS spheres using soap free and RITP-soap free emulsion polymerization. Macromol. Res. 20, 977–984 (2012). https://doi.org/10.1007/s13233-012-0144-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0144-9

Keywords

Navigation