Skip to main content
Log in

Structural evolution of poly(ether-b-amide12) elastomers during the uniaxial stretching: An in situ wide-angle X-ray scattering study

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The structural evolution of poly(ether-b-amide12) (PEBAX®) elastomers was studied by using wide angle X-ray scattering (WAXS) at a synchrotron radiation source during the uniaxial stretching. The changes in the crystal structure of the nylon 12 were tracked during the stretching of the P6333 and P2533 compressed films, which represent a hard rubber and a soft elastomer, respectively. The nylon 12 chains of both samples favored the γ-phase in the unstrained state but their responses to the external drawing force were different. For the P6333 film containing small amounts of the soft segments, the applied force dilated the 001 crystalline lattice plane of nylon 12 which is perpendicular to its main chain and the γ form was transformed into the α″ form when the applied force was high enough. However, for the P2533 containing large amounts of the soft segments, the lattice dimensions of the nylon 12 crystals did not change with the external drawing force and the transient α″ form was not observed. These results might suggest that the transfer of the external force to the crystal was difficult for P2533 due to the chain relaxation of the soft segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Scollenberger, H Scott, and G. R. Moore, Rubber Chem. Technol., 35, 742 (1962).

    Article  Google Scholar 

  2. G. M. Estes, S. L. Cooper, and A. V. Tobolsky, J. Macromol. Sci. Rev. Macromol. Chem., 4, 313 (1970).

    Article  CAS  Google Scholar 

  3. G. Legge, N. R. Quirk, and R. H. E. Schroeder, in Thermoplastic Elastomers, 2nd ed., Hanser, Munich, in 1996, p 227.

    Google Scholar 

  4. H. K. Lee, H. Fragiadakis, D. Martin, A. Milne, J. Milne, and J. Runt, Macromolecules, 43, 3125 (2010).

    Article  CAS  Google Scholar 

  5. Thermoplastic Elastomers: A Comprehensive Review, 1st ed., N. R. Legge, G. Holden, and H. E. Schroeder, Eds., Hanser-Publishers, New York, 1987, Chapters 8 and 9.

    Google Scholar 

  6. G. Deleens, P. Foy, and E. Marechal, Eur. Polym. J., 13, 337 (1977).

    Article  CAS  Google Scholar 

  7. G. Deleens, ANTEC, 419 (1981).

  8. N. Hiramatsu, K. Haraguchi, and S. Hirakawa, J. Appl. Phys., 22, 335 (1983).

    Article  CAS  Google Scholar 

  9. L. J. Mathias and C. G. Johnson, Macromolecules, 24, 6114 (1991).

    Article  CAS  Google Scholar 

  10. C. Ramesh, Macromolecules, 32, 5704 (1999).

    Article  CAS  Google Scholar 

  11. L. Li, M. H. J. Koch, and W. H. de Jeu, Macromolecules, 36 1626 (2003).

    Article  CAS  Google Scholar 

  12. S. M. Aharoni, n-Nylons: Their Synthesis, Structure and Properties, John Wiley & Sons, Chichester, 1997, Chapter 1.3.

    Google Scholar 

  13. G. Cojazzi, A. Fichera, Garbuglio, V. Malta, and R. Zanetti, Makromol. Chem., 168, 289 (1973).

    Article  CAS  Google Scholar 

  14. N. Dencheva, T. G. Nunes, M. J. Oliveira, and Z. Denchev, J. Polym. Sci. Part B: Polym. Phys., 43, 3720 (2005).

    Article  CAS  Google Scholar 

  15. D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polym. Sci., 17, 159 (1955).

    Article  CAS  Google Scholar 

  16. T. Ishikawa, S. Nagai, and N. Kasai, J. Polym. Sci. Polym. Phys. Ed., 18, 1413 (1980).

    Article  CAS  Google Scholar 

  17. T. Ishikawa, S. Nagai, and N. Kasai, Makromol. Chem., 182, 977 (1981).

    Google Scholar 

  18. M. G. Northolt, B. J. Tabor, and J. van Aartsen, J. Polym. Sci. Part A-2: Polym. Phys., 10, 191 (1972).

    Article  CAS  Google Scholar 

  19. J. E. Stamhuis and A. J. Pennings, Polymer, 18, 667 (1977).

    Article  CAS  Google Scholar 

  20. N. A. Jones, E. D. T. Atkins, M. T. Hill, S. J. Cooper, and L. Franco, Polymer, 38, 2689 (1997).

    Article  CAS  Google Scholar 

  21. D. Wang, C. Shao, B. Zhao, L. Bai, X. Wang, and L. Li, Macromolecules, 43, 2406 (2010).

    Article  CAS  Google Scholar 

  22. L. Bai, Z. Hong, D. Wang, J. Li, X. Wang, G. Pan, L. Li, and X. Li, Polymer, 51, 5604 (2010).

    CAS  Google Scholar 

  23. Y. H. Song, H. Yamamoto, and N. Nemoto, Macromolecules, 37 6219 (2004).

    Article  CAS  Google Scholar 

  24. J. P. Sheth, J. Xu, and G. L. Wilkes, Polymer, 44, 743 (2003).

    Article  CAS  Google Scholar 

  25. K. Imada, T. Miyakawa, Y. Chatani, H. Tadokoro, and S. Murahashi, Macromol. Chem., 83, 113 (1965).

    Article  CAS  Google Scholar 

  26. N. Dencheva, Z. Denchev, M. J. Oliveira, T. G. Nunes, and S. S. Funari, J. Appl. Polym. Sci., 109, 288 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamal, T., Park, SY., Park, JH. et al. Structural evolution of poly(ether-b-amide12) elastomers during the uniaxial stretching: An in situ wide-angle X-ray scattering study. Macromol. Res. 20, 725–731 (2012). https://doi.org/10.1007/s13233-012-0109-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0109-z

Keywords

Navigation