Skip to main content
Log in

Fabrication of porous PLGA microspheres with BMP-2 releasing polyphosphate-functionalized nano-hydroxyapatite for enhanced bone regeneration

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper introduces a novel bone-regenerative scaffold that is based on the systematic combination of porous polymer microspheres, nano-hydroxyapatite, and bone morphogenetic protein-2 (BMP-2), where each component was rationally incorporated to express its intrinsic activity in bone tissue formation. Poly(lactide-co-glycolide) (PLGA) microspheres, with interconnected pore structures, were fabricated by a gas-forming method in a water-in-oil-in-water double emulsion and solvent evaporation process. Polyphosphate-functionalized nano-hydroxyapatite (PP-n-HAp) was employed as a main component and was immobilized on the pore surface of the PLGA microspheres to controllably incorporate and release BMP-2. The surface polyphosphate functionalities of PP-n-HAp enabled the stable chemical immobilization of nano-hydroxyapatite (n-HAp) on the amine-treated pore surface of the PLGA microspheres. Field-emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) confirmed the nano-level exposure of n-HAp on the pore surface of the PLGA microspheres. BMP-2 with a positive charge was bound at a high efficiency onto the anionic phosphates of surface-immobilized PP-n-HAp and was controllably released for approximately 1 month. The release rate was manipulated by adjusting the amount of loaded BMP-2. The osteogenic differentiation and proliferation of human adipose-derived stem cells (hADSCs) within the n-HAp/BMP-2-incorporated microspheres were monitored in a dynamic 3D cell culture system. Histological, immunohistochemical, and quantitative real-time polymerase chain reaction (PCR) analyses showed that the PP-n-HAp-immobilized surface promoted cell adhesion/proliferation and osteoconduction. With its osteoinductive property, the sustained release of BMP-2 further enhanced the bone tissue regenerative activity of the porous microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Liu, Y. Lu, X. Tian, G. Cui, Y. Zhao, Q. Yang, S. Yu, G. Xing, and B. Zhang, Biomaterials, 30, 6276 (2009).

    Article  CAS  Google Scholar 

  2. S. S. Kim, S. J. Gwak, and B. S. Kim, J. Biomed. Mater. Res., 87A, 245 (2008).

    Article  CAS  Google Scholar 

  3. K. Kim, D. Dean, A. Lu, A. G. Mikos, and J. P. Fisher, Acta Biomater., 7, 1249 (2011).

    Article  CAS  Google Scholar 

  4. H. Shen, X. Hu, F. Yang, J. Bei, and S. Wang, Acta Biomater., 6, 455 (2010).

    Article  CAS  Google Scholar 

  5. G. Wei and P. X. Ma, Biomaterials, 25, 4749 (2004).

    Article  CAS  Google Scholar 

  6. N. Ribeiro, S. R. Sousa, and F. J. Monteiro, J. Colloid Interface Sci., 351, 398 (2010).

    Article  CAS  Google Scholar 

  7. S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim, Biomaterials, 27, 1399 (2006).

    Article  CAS  Google Scholar 

  8. C. R. Kothapalli, M. T. Shaw, and M. Wei, Acta Biomater., 1, 653 (2005).

    Article  Google Scholar 

  9. T. Kokubo, Acta Mater., 46, 2519 (1998).

    Article  CAS  Google Scholar 

  10. W. J. Landis, F. H. Silver, and J. W. Freeman, J. Mater. Chem., 16, 1495 (2006).

    Article  CAS  Google Scholar 

  11. J. Lee, W. I. Choi, G. Tae, Y. H. Kim, S. S. Kang, S. E. Kim, S. H. Kim, Y. Jung, and S. H. Kim, Acta Biomater., 7, 244 (2011).

    Article  CAS  Google Scholar 

  12. C. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, Biomaterials, 27, 3115 (2006).

    Article  CAS  Google Scholar 

  13. I. Song, B. S. Kim, C. S. Kim, and G. I. Im, Biochem. Biophys. Res. Commun., 408, 126 (2011).

    Article  CAS  Google Scholar 

  14. S. C. Lee, H. W. Choi, H. J. Lee, K. J. Kim, J. H. Chang, S. Y. Kim, J. Choi, K. S. Oh, and Y. K. Jeong, J. Mater. Chem., 17, 174 (2007).

    Article  CAS  Google Scholar 

  15. H. J. Chung, I. K. Kim, T. G. Kim, and T. G. Park, Tissue Eng. Part A, 14, 607 (2008).

    Article  CAS  Google Scholar 

  16. K. Park, J. S. Park, D. G. Woo, H. N. Yang, H. M. Chung, and K. H. Park, Biomaterials, 29, 2490 (2008).

    Article  CAS  Google Scholar 

  17. S. E. Kim, H. W. Choi, H. J. Lee, J. H. Chang, J. Choi, K. J. Kim, H. J. Lim, Y. J. Jun, and C. Lee, J. Mater. Chem., 18, 4994 (2008).

    Article  CAS  Google Scholar 

  18. H. J. Lee, H. W. Choi, K. J. Kim, and S. C. Lee, Chem. Mater., 18, 5111 (2006).

    Article  CAS  Google Scholar 

  19. G. Ciapetti, L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa, and A. Giunti, Biomaterials, 24, 3815 (2003).

    Article  CAS  Google Scholar 

  20. H. W. Choi, H. J. Lee, K. J. Kim, H. M. Kim, and S. C. Lee, J. Colloid Interface Sci., 304, 277 (2006).

    Article  CAS  Google Scholar 

  21. F. M. Chen, R. Chen, X. J. Wang, H. H. Sun, and Z. F. Wu, Biomaterials, 30, 5215 (2009).

    Article  CAS  Google Scholar 

  22. Y. Liu, Y. Lu, X. Tian, G. Cui, Y. Zhao, Q. Yang, S. Yu, G. Xing, and B. Zhang, Biomaterials, 30, 6276 (2009).

    Article  CAS  Google Scholar 

  23. H. J. Chung and T. G. Park, Tissue Eng. Part A, 15, 1391 (2008).

    Article  Google Scholar 

  24. Z. Shi, K. G. Neoh, E. T. Kang, C. K. Poh, and W. Wang, Biomacromolecules, 10, 1603 (2009).

    Article  CAS  Google Scholar 

  25. G. Balasundaram, C. Yao, and T. J. Webster, J. Biomed. Mater. Res., 84A, 447 (2008).

    Article  CAS  Google Scholar 

  26. J. D. Kretlow and A. G. Mikos, Tissue Eng., 13, 927 (2007).

    Article  CAS  Google Scholar 

  27. I. C. Stancu, R. Filmon, C. Cincu, B. Marculescu, C. Zaharia, Y. Tourmen, M. F. Basle, and D. Chappard, Biomaterials, 25, 205 (2004).

    Article  CAS  Google Scholar 

  28. Y. J. Yin, X. Y. Luo, J. F. Cui, C. Y. Wang, X. M. Guo, and K. D. Yao, Macromol. Biosci., 4, 971 (2004).

    Article  CAS  Google Scholar 

  29. W. L. Murphy and D. J. Mooney, J. Am. Chem. Soc., 124, 1910 (2002).

    Article  CAS  Google Scholar 

  30. J. Tan, R. A. Gemeinhart, M. Ma, and W. M. Saltzman, Biomaterials, 26, 3663 (2005).

    Article  CAS  Google Scholar 

  31. R. A. Gemeinhart, C. M. Bare, R. T. Haasch, and E. J. Gemeinhart, J. Biomed. Mater. Res. A, 78, 433 (2006).

    Google Scholar 

  32. J. Jadlowiec, H. Koch, X. Zhang, P. G. Campbell, M. Seyedain, and C. Sfeir, J. Biol. Chem., 279, 53323 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, B.J., Jeong, S.Y., Koo, A.N. et al. Fabrication of porous PLGA microspheres with BMP-2 releasing polyphosphate-functionalized nano-hydroxyapatite for enhanced bone regeneration. Macromol. Res. 20, 715–724 (2012). https://doi.org/10.1007/s13233-012-0103-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0103-5

Keywords

Navigation