Macromolecular Research

, Volume 20, Issue 5, pp 508–514 | Cite as

Synthesis of star-shaped poly(N-isopropylacrylamide) via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B

  • Zhengguo Gao
  • Jinaying Liang
  • Xiangdong Tao
  • Yuan Cui
  • Toshifumi Satoh
  • Toyoji Kakuchi
  • Qian Duan
Articles

Abstract

Zinc(II) tetra-(2-chloropropionylamido) phthalocyanine (TAPcCl) was synthesized as the initiator for atom transfer radical polymerization (ATRP). Using CuBr/tris(2-dimethylaminoethyl)amine as the catalyst system, ATRP of N-isopropylacrylamide (NIPAM) was performed to create a new star-shaped poly(N-isopropylacrylamide) (PNIPAM) with a zinc phthalocyanine core and PNIPAM arms (TAPc-PAM). The structures of the initiator and the polymers were characterized by means of Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The polydispersity index obtained by gel permeation chromatography indicated that the molecular weight distribution was narrow. The lower critical solution temperatures (LCST) for the TAPc-PAM aqueous solutions measured using the turbidimetry method were increased due to incorporation of the phthalocyanine core and decreased as molecular weight increased. TAPc-PAM possessed photocatalytic activity, a finding that was verified by Rhodamine B degradation in the presence of hydrogen peroxide under visible light. Moreover, the catalytic efficiency was higher at its LCST, which encouraged reuse of the photocatalyst.

Keywords

poly(N-isopropylacrylamide) phthalocyanine atom transfer radical polymerization photocatalytic oxidation Rhodamine B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Seelan, M. S. Agashe, D. Srinivas, and S. Sivasanker, J. Mol. Catal. A: Chem., 168, 61 (2001).CrossRefGoogle Scholar
  2. (2).
    S. Makhseed, F. Al-Kharafi, J. Samuel, and B. Ateya, Catal. Commun., 10, 1284 (2009).CrossRefGoogle Scholar
  3. (3).
    H. K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, Polymer, 41, 1757 (2000).CrossRefGoogle Scholar
  4. (4).
    F. Yang, M. Shtein, and S. R. Forrest, Nat. Mater., 4, 37 (2005).CrossRefGoogle Scholar
  5. (5).
    G. Torre, P. Vázquez, F. Agulló-López, and T. Torres, Chem. Rev., 104, 3723 (2004).CrossRefGoogle Scholar
  6. (6).
    E. Marais, R. Klein, E. Antunes, and T. Nyokong, J. Mol. Catal. A: Chem., 261, 36 (2007).CrossRefGoogle Scholar
  7. (7).
    X. Y. Shen, W. Y. Lu, G. H. Feng, Y. Y. Yao, and W. X. Chen, J. Mol. Catal. A: Chem., 298, 17 (2009).CrossRefGoogle Scholar
  8. (8).
    Z. G. Xiong and Y. M. Xu, Chem. Mater., 19, 1452 (2007).CrossRefGoogle Scholar
  9. (9).
    P. Zhao, J. W. Woo, Y. S. Park, Y. N. Song, and F. S. Zhang, Macromol. Res., 18, 496 (2010).CrossRefGoogle Scholar
  10. (10).
    B. Agboola, K. I. Ozoemena, and T. Nyokong, J. Mol. Catal. A: Chem., 248, 84 (2006).CrossRefGoogle Scholar
  11. (11).
    J. S. Scarpa, D. D. Mueller, and I. M. Klotz, J. Am. Chem. Soc., 89, 6024 (1967).CrossRefGoogle Scholar
  12. (12).
    M. Heskins and J. E. Guillet, J. Macromol. Sci. A: Pure Appl. Chem., 2, 1441 (1968).CrossRefGoogle Scholar
  13. (13).
    H. G. Schild, Prog. Polym. Sci., 17, 163 (1992).CrossRefGoogle Scholar
  14. (14).
    I. Ankareddi and C. S. Brazel, Int. J. Pharm., 336, 241 (2007).CrossRefGoogle Scholar
  15. (15).
    K. Fujimoto, C. Iwasaki, C. Arai, M. Kuwako, and E. Yasugi, Biomacromolecules, 1, 515 (2000).CrossRefGoogle Scholar
  16. (16).
    X. Z. Zhang, R. X. Zhuo, J. Z. Cui, and J. T. Zhang, Int. J. Pharm., 235, 43 (2002).CrossRefGoogle Scholar
  17. (17).
    T. Matsuda, Y. Saito, and K. Shoda, Biomacromolecules, 8, 2345 (2007).Google Scholar
  18. (18).
    S. S. Pennadam, M. D. Lavigne, C. F. Dutta, K. Firman, D. Mernagh, D. C. Górecki, and C. Alexander, J. Am. Chem. Soc., 126, 13208 (2004).CrossRefGoogle Scholar
  19. (19).
    X. J. Lu, L. F. Zhang, L. Z. Meng, and Y. H. Liu, Polym. Bull., 59, 195 (2007).CrossRefGoogle Scholar
  20. (20).
    W. X. Chen, B. Y. Zhao, Y. Pan, Y. Y. Yao, S. S. Lu, S. L. Chen, and L. J. Du, J. Colloid Interface Sci., 300, 626 (2006).CrossRefGoogle Scholar
  21. (21).
    W. X. Chen, W. Y. Lü, X. Y. Shen, and Y. Y. Yao, Sci. China Chem., 53, 638 (2010).CrossRefGoogle Scholar
  22. (22).
    J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995).CrossRefGoogle Scholar
  23. (23).
    M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, Macromolecules, 28, 1721 (1995).CrossRefGoogle Scholar
  24. (24).
    K. Matyjaszewski and J. H. Xia, Chem. Rev., 101, 2921 (2001).CrossRefGoogle Scholar
  25. (25).
    G. Masci, L. Giacomelli, and V. Crescenzi, Macromol. Rapid Commun., 25, 559 (2004).CrossRefGoogle Scholar
  26. (26).
    W. Jakubowski and K. Matyjaszewski, Angew. Chem. Int. Ed., 45, 4482 (2006).CrossRefGoogle Scholar
  27. (27).
    Q. Duan, Y. Miura, A. Narumi, X. D. Shen, S. I. Sato, T. Satoh, and T. Kakuchi, J. Polym. Sci. Part A: Polym. Chem., 44, 1117 (2006).CrossRefGoogle Scholar
  28. (28).
    Q. Duan, A. Narumi, Y. Miura, X. D. Shen, S. I. Sato, T. Satohand, and T. Kakuchi, Polym. J., 38, 306 (2006).CrossRefGoogle Scholar
  29. (29).
    X. D. Tao, Z. G. Gao, T. Satoh, Y. Cui, T. Kakuchi, and Q. Duan, Polym. Chem., 2, 2068 (2011).CrossRefGoogle Scholar
  30. (30).
    M. Ciampolini and N. Nardi, Inorg. Chem., 5, 41 (1966).CrossRefGoogle Scholar
  31. (31).
    P. Tau and T. Nyokong, J. Electroanal. Chem., 611, 10 (2007)CrossRefGoogle Scholar
  32. (32).
    Q. Zhang, B. He, Q. Dai, J. H. Gu, N. Gu, and D. Y. Huang, Supramol. Sci., 5, 631 (1998).CrossRefGoogle Scholar
  33. (33).
    B. M. Hassan, H. Li, and N. B. McKeown, J. Mater. Chem., 10, 39 (2000).CrossRefGoogle Scholar
  34. (34).
    Y. Xia, X. C. Yin, N. A. D. Burke, and H. D. H. Stöver, Macromolecules, 38, 5937 (2005).CrossRefGoogle Scholar
  35. (35).
    Y. Xia, N. A. D. Burke, and H. D. H. Stöver, Macromolecules, 39, 2275 (2006).CrossRefGoogle Scholar
  36. (36).
    X. Tao, W. H. Ma, T. Y. Zhang, and J. C. Zhao, Chem. Eur. J., 8, 1321 (2002).CrossRefGoogle Scholar
  37. (37).
    Y. Fang and D. Y. Chen, Mater. Res. Bull., 45, 1728 (2010).CrossRefGoogle Scholar
  38. (38).
    L. Wu, A. Li, G. D. Gao, Z. H. Fei, S. R. Xu, and Q. X. Zhang, J. Mol. Catal. A: Chem., 269, 183 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Zhengguo Gao
    • 1
  • Jinaying Liang
    • 1
  • Xiangdong Tao
    • 1
  • Yuan Cui
    • 1
  • Toshifumi Satoh
    • 2
  • Toyoji Kakuchi
    • 2
  • Qian Duan
    • 1
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  2. 2.Division of Biotechnology and Macromolecular Chemistry, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations