Macromolecular Research

, Volume 20, Issue 2, pp 216–219 | Cite as

Superhydrophobic carbon fiber surfaces prepared by growth of carbon nanostructures and polydimethylsiloxane coating

  • Hyun Ook Seo
  • Kwang-Dae Kim
  • Myung-Geun Jeong
  • Young Dok Kim
  • Kang Ho Choi
  • Eun Mi Hong
  • Kyu Hwan Lee
  • Dong Chan Lim


We prepared nanostructured carbon fiber surfaces using chemical vapor deposition in which Ni nanoparticles were used as carbon nanostructure growth catalysts. The surface of the nanostructured carbon fiber was covered by a thin polydimethylsiloxane film. This surface showed superhydrophobic behavior with a water contact angle close to 170 °C, and its superhydrophobicity was sustained in a wide pH range (1–13).


superhydrophobicity nanostructures carbon thin film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Rahmawan, M. W. Moon, K. S. Kim, K. R. Lee, and K. Y. Suh, Langmuir, 26, 484 (2010).CrossRefGoogle Scholar
  2. (2).
    M. N. Qu, G. Y. Zhao, X. P. Cao, and J. Y. Zhang, Langmuir, 24, 4185 (2008).CrossRefGoogle Scholar
  3. (3).
    C. Neto, K. R. Joseph, and W. R. Brant, Phys. Chem. Chem. Phys., 11, 9537 (2009).CrossRefGoogle Scholar
  4. (4).
    P. A. Levkin, F. Svec, and J. M. J. Frechet, Adv. Funct. Mater., 19, 1993 (2009).CrossRefGoogle Scholar
  5. (5).
    Y. Zhu, J. C. Zhang, Y. M. Zheng, Z. B. Huang, L. Feng, and L. Jiang, Adv. Funct. Mater., 16, 568 (2006).CrossRefGoogle Scholar
  6. (6).
    S. Srinivasan, V. K. Praveen, R. Philip, and A. Ajayaghosh, Angew. Chem. Int. Ed., 47, 5750 (2008).Google Scholar
  7. (7).
    J. B. Wang, Y. F. Shen, S. Kessel, P. Fernandes, K. Yoshida, S. Yagai, D. C. Kurth, H. Mohwald, and T. Nakanishi, Angew. Chem. Int. Ed., 48, 2166 (2009).CrossRefGoogle Scholar
  8. (8).
    H. S. Lim, D. Kwak, D. Y. Lee, S. G. Lee, and K. Cho, J. Am. Chem. Soc., 129, 4128 (2007).CrossRefGoogle Scholar
  9. (9).
    X. J. Feng, J. Zhai, and L. Jiang, Angew. Chem. Int. Ed., 44, 5115 (2005).CrossRefGoogle Scholar
  10. (10).
    M. Nicolas, F. Guittard, and S. Geribaldi, Angew. Chem. Int. Ed., 45, 2251 (2006).CrossRefGoogle Scholar
  11. (11).
    F. Z. Zhang, L. L. Zhao, H. Y. Chen, S. L. Xu, D. G. Evans, and X. Duan, Angew. Chem. Int. Ed., 47, 2466 (2008).CrossRefGoogle Scholar
  12. (12).
    Y. H. Xiu, L. B. Zhu, D. W. Hess, and C. P. Wong, Langmuir, 22, 9676 (2006).CrossRefGoogle Scholar
  13. (13).
    M. N. Qu, B. W. Zhang, S. Y. Song, L. Chen, J. Y. Zhang, and X. P. Cao, Adv. Funct. Mater., 17, 593 (2007).CrossRefGoogle Scholar
  14. (14).
    Y. W. Lee, S. H. Park, K. B. Kim, and J. K. Lee, Adv. Mater., 19, 2330 (2007).CrossRefGoogle Scholar
  15. (15).
    Z. Guo, F. Zhou, J. Hao, and W. Liu, J. Am. Chem. Soc., 127, 15670 (2005).CrossRefGoogle Scholar
  16. (16).
    I. A. Larmour, S. E. J. Bell, and G. C. Saunders, Angew. Chem. Int. Ed., 119, 1740 (2007).CrossRefGoogle Scholar
  17. (17).
    J. Li, S. Sambandam, W. J. Lu, and C. M. Lukehart, Adv. Mater., 20, 420 (2008).CrossRefGoogle Scholar
  18. (18).
    J. Shieh, F. J. Hou, Y. C. Chen, H. M. Chen, S. P. Yang, C. C. Cheng, and H. L. Chen, Adv. Mater., 22, 597 (2010).CrossRefGoogle Scholar
  19. (19).
    L. Feng, Z. L. Yang, J. Zhai, Y. L. Song, B. Q. Lin, Y. M. Ma, Z. Z. Yang, L. Jiang, and D. B. Zhu, Angew. Chem. Int. Ed., 42, 4217 (2003).CrossRefGoogle Scholar
  20. (20).
    T. Takamura and Y. Sato, J. Power Sources, 196, 5774 (2011).CrossRefGoogle Scholar
  21. (21).
    S. H. Lin, K. L. Tung, W. J. Chen, and H. W. Chang, J. Memb. Sci., 333, 30 (2009).CrossRefGoogle Scholar
  22. (22).
    C. H. Liu, T. H. Ko, W. S. Kuo, H. K. Chou, H. W. Chang, and Y. K. Liao, J. Power Sources, 186, 450 (2009).CrossRefGoogle Scholar
  23. (23).
    C. Lee and S. Baik, Carbon, 48, 2192 (2011).CrossRefGoogle Scholar
  24. (24).
    P. Agnihotri, S. Basu, and K. K. Kar, Carbon, 49, 3098 (2011).CrossRefGoogle Scholar
  25. (25).
    A. M. Diez-Pascual, B. Ashrafi, M. Naffakh, J. M. Gonzalez- Dominguez, A. Johnston, B. Simard, M. T. Martinez, and M. A. Gomez-Fatou, Carbon, 49, 2817 (2011).CrossRefGoogle Scholar
  26. (26).
    F. Zhao, Y. D. Huang, L. Liu, Y. P. Bai, and L. W. Xu, Carbon, 49, 2624 (2011).CrossRefGoogle Scholar
  27. (27).
    M. Zhu, W. Zuo, H. Yu, W. Yang, and Y. Chen, J. Mater. Sci., 41, 3793 (2006).CrossRefGoogle Scholar
  28. (28).
    D. Han and A. J. Steckl, Langmuir, 25, 9454 (2009).CrossRefGoogle Scholar
  29. (29).
    T. Pisuchpen, N. Chaim-ngoen, N. Intasanta, P. Supaphol, and V. P. Hoven, Langmuir, 27, 3654 (2011).CrossRefGoogle Scholar
  30. (30).
    J. K. Yuan, X. G. Liu, O. Akbulut, J. Q. Hu, S. L. Suib, J. Kong, and F. Stellacci, Nat. Nanotechnol., 3, 332 (2008).CrossRefGoogle Scholar
  31. (31).
    J.-M. Lim, G.-R. Yi, J. H. Moon, C.-J. Heo, and S.-M. Yang, Langmuir, 23, 7981 (2007).CrossRefGoogle Scholar
  32. (32).
    K. J. Kim, J. W. Kim, M. S. Yang, and J. H. Shin, Phys. Rev. B, 74, 153305 (2006).CrossRefGoogle Scholar
  33. (33).
    G. Ertl and J. Kuppers, Low Energy Electrons and Surface Chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 1985.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Hyun Ook Seo
    • 1
  • Kwang-Dae Kim
    • 1
  • Myung-Geun Jeong
    • 1
  • Young Dok Kim
    • 1
  • Kang Ho Choi
    • 2
  • Eun Mi Hong
    • 2
  • Kyu Hwan Lee
    • 2
  • Dong Chan Lim
    • 2
  1. 1.Department of ChemistrySungkyunkwan UniversityGyeonggiKorea
  2. 2.Materials Processing DivisionKorea Institute of Materials ScienceGyeongnamKorea

Personalised recommendations