pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens


This study examined the antibacterial mode of action of low molecular weight water-soluble chitosan (LMWSC; MW1, MW3, MW5 and MW10) using a combination of approaches, including antibacterial assays, culture in media with different pH values, bactericidal kinetics, cellular leakage measurements, depolarization, and electron microscopy, as well as an in vivo study utilizing a wound infection and wound healing model. The antibacterial activity of LMWSC was related inversely to pH, with higher activities being observed at lower pH values. In addition, evaluation of the effect of bactericidal concentrations of LMWSC on the morphology of Bacillus megaterium and Escherichia coli O–157 revealed that it induces filamentation. Furthermore, the degree of depolarization (in Escherichia coli, pH 7.4) and calcein leakage (lipid composition; L-α-phosphatidylethanolamine (PE)/L-α-phosphatidyl-dl-glycerol (PG)=7/3 (w/w), pH 5.4 and 7.4) were evaluated. Moreover, cells cultured at various pHs were evaluated by confocal microscopy (pH 5.4 and 7.4). These results showed that treatment with LMWSC with different molecular weights had different effects on bacteria. In particular, LMWSC (MW10) cause more visible damage to the bacterial cell membrane than lower molecular weight LMWSC, which is due most likely to the penetration of cells by the lower weight molecules. Interestingly, MW5 was found to attack the membrane and penetrate the cells. In addition, scanning electron microscopy showed that MW10 caused significant morphological changes to the surface of the bacteria. Finally, an in vivo study utilizing a wound infection or healing model showed that LMWSC had the potential for use as a lead compound for the development of a novel anti-infective or healing compound.

This is a preview of subscription content, access via your institution.


  1. (1)

    D. Raafat, K. von Bargen, A. Haas, and H. G. Sahl, Appl. Environ. Microbiol., 74, 3764 (2008).

    Article  CAS  Google Scholar 

  2. (2)

    M. T. Tosteson, S. J. Holmes, M. Razin, and D. C. Tosteson, J. Membr. Biol., 87, 35 (1985).

    Article  CAS  Google Scholar 

  3. (3)

    Y. J. Jeon and S. K. Kim, J. Chitin Chitosan, 6, 163 (2001).

    Google Scholar 

  4. (4)

    P. J. Park, J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim, J. Microbiol. Biotechnol., 14, 317 (2004).

    CAS  Google Scholar 

  5. (5)

    P. J. Park, J. Y. Je, and S. K. Kim, Carbohydr. Polym., 55, 17 (2004).

    Article  CAS  Google Scholar 

  6. (6)

    C. Porporatto, I. D. Bianco, C. M. Riera, and S. G. Correa, Biochem. Biophys. Res. Commun., 304, 266 (2003).

    Article  CAS  Google Scholar 

  7. (7)

    Y. Maezaki, K. Tsuji, Y. Nakagawa, Y. Kawai, M. Akimoto, T. Tsugita, W. Takekawa, A. Terada, H. Hara, and T. Mitsuoka, Biosci. Biotechnol. Biochem., 57, 1439 (1993).

    Article  CAS  Google Scholar 

  8. (8)

    J. W. Nah and M. K. Jang, J. Polym. Sci. Part A: Polym. Chem., 40, 3796 (2002).

    Article  CAS  Google Scholar 

  9. (9)

    T. H. Kim, I. K. Park, J. W. Nah, Y. J. Choi, and C. S. Cho, Biomaterials, 25, 3783 (2004).

    Article  CAS  Google Scholar 

  10. (10)

    M. K. Jang, Y. I. Jeong, and J. W. Nah, Colloids Surf. B: Biointerf., 81, 530 (2010).

    Article  CAS  Google Scholar 

  11. (11)

    Y. Park, M. H. Kim, S. C. Park, H. Cheong, M. K. Jang, J. W. Nah, and K. S. Hahm, J. Microbiol. Biotechnol., 18, 1729 (2008).

    CAS  Google Scholar 

  12. (12)

    J. Rhoades and S. Roller, Microbiol., 66, 80 (2002).

    Google Scholar 

  13. (13)

    Y. Park, S. N. Park, S.-C. Park, J. Y. Park, Y. H. Park, J. S. Hahm, and K.-S. Hahm, Biochem. Biophys. Res. Commun., 321, 631 (2004).

    Article  CAS  Google Scholar 

  14. (14)

    K. Matsuzaki, K. Sugishita, and K. Miyajima, FEBS Lett., 449, 221 (1999).

    Article  CAS  Google Scholar 

  15. (15)

    Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, and Y. Shai, Biochemistry, 31, 12416 (1992).

    Article  CAS  Google Scholar 

  16. (16)

    Y. Park, S. N. Park, S.-C. Park, S. O. Shin, and K.-S. Hahm, Biochim. Biophys. Acta, 1764, 24 (2006).

    CAS  Google Scholar 

  17. (17)

    S. A. Kristian, A. M. Timmer, G. Y. Liu, X. Lauth, N. Sal-Man, Y. Rosenfeld, Y. Shai, R. L. Gallo, and V. Nizet, FASEB J., 21, 1107 (2007).

    Article  CAS  Google Scholar 

  18. (18)

    D. G. Lee, H. N. Kim, Y. Park, H. K. Kim, B. H. Choi, C. H. Choi, and K.-S. Hahm, Biochim. Biophys. Acta, 1598, 185 (2002).

    CAS  Google Scholar 

  19. (19)

    J. Lutkenhaus, Trends Genet., 6, 22 (1990).

    Article  CAS  Google Scholar 

  20. (20)

    X. F. Liu, Y. L. Guan, D. Z. Yang, Z. Li, and K. D. Yao, J. Appl. Polym. Sci., 79, 1324 (2001).

    Article  CAS  Google Scholar 

  21. (21)

    J. A. Op den Kamp, Annu. Rev. Biochem., 48, 47 (1979).

    Article  CAS  Google Scholar 

  22. (22)

    J. C. Fernandes, P. Eaton, A. M. Gomes, M. E. Pintado, and M. F. Xavier, Ultramicroscopy, 109, 854 (2009).

    Article  CAS  Google Scholar 

  23. (23)

    J. C. M. Stewart, Anal. Biochem., 104, 10 (1980).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jae-Woon Nah or Yoonkyung Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, SC., Nah, JW. & Park, Y. pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens. Macromol. Res. 19, 853–860 (2011).

Download citation


  • low molecular weight water-soluble chitosan (LMWSC)
  • antibacterial activity
  • scanning electron microscopy