Skip to main content

Control of molecular weight distribution for polypropylene obtained by commercial ziegler-natta catalyst: Effect of electron donor

Abstract

Polymerization of propylene was carried out using a MgCl2-supported TiCl4 catalyst in conjunction with triethylaluminium (TEA) as the cocatalyst and various types of alkoxy silane compounds as an external donor. The effect of the external donor on the performance of the catalyst with different internal donors was investigated. The polydispersity index (PDI) of polypropylene (PP) obtained with the diether and succinate based catalyst were decreased with the introduction of an external donor and the PDI increased for the phthalate based catalyst. The molecular weight and PDI increased with the introduction of an external donor. The highest PDI of PP was obtained by polymerization with di-n-propyldimethoxysilane (DnPDMS) as an external donor. In addition, a mixture of external donors was used to control the PDI of PP and the composition of the catalyst was examined after treated with TEA/external donor. Furthermore, the theoretical PDI value was calculated for a mixture of external donor systems. The PDI of PP could be controlled and predicted while retaining high activity, high isospecificity and high molecular weight by changing the structure of the external donor and/or their mixture.

This is a preview of subscription content, access via your institution.

References

  1. Y. V. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts, Elsevier, Amsterdam, 2008.

    Google Scholar 

  2. N. Kashiwa, J. Polym. Sci. Part A: Polym. Chem., 42, 1 (2004).

    Article  CAS  Google Scholar 

  3. K. Soga, T. Shiono, and Y. Doi, Makromol. Chem., 189, 1531 (1988).

    Article  CAS  Google Scholar 

  4. M. C. Sacchi, F. Forlini, I. Tritto, P. Locatelli, G. Morini, L. Noristi, and E. Albizzati, Macromolecules, 29, 3341 (1996).

    Article  CAS  Google Scholar 

  5. M. Gao, H. Liu, J. Wang, C. Li, J. Ma, and G. Wei, Polymer, 45, 2175 (2004).

    Article  CAS  Google Scholar 

  6. T. Keii, Y. Doi, E. Suzuki, M. Tamura, M. Murata, and K. Soga, Makromol. Chem., 185, 1537 (1984).

    Article  CAS  Google Scholar 

  7. M. C. Forte and F. M. B. Coutinho, Eur. Polym. J., 32, 605 (1996).

    Article  CAS  Google Scholar 

  8. G. Cecchin, G. Morini, and A. Pelliconi, Macromol. Symp., 173, 195 (2001).

    Article  CAS  Google Scholar 

  9. G. Morini, G. Balbontin, Y. Gulevich, H. Duijghuisen, R. Kelder, P. A. Klusener, and F. Korndorffer, WO 0063261 (2000).

  10. A. Correa, F. Piemontesi, G. Morini, and L. Cavallo, Macromolecules, 40, 9181 (2007).

    Article  CAS  Google Scholar 

  11. H. Matsuoka, B. Liu, H. Nakaani, I. Nishiyama, and M. Terano, Polym. Int., 51, 781 (2002).

    Article  CAS  Google Scholar 

  12. D. H. Lee and Y. T. Jeong, Eur. Polym. J., 29, 883 (1993).

    Article  CAS  Google Scholar 

  13. M. C. Sacchi, F. Forlini, I. Tritto, R. Mendichi, G. Zannoni, and L. Noristi, Macromolecules, 25, 5914 (1992).

    Article  CAS  Google Scholar 

  14. A. Proto, L. Oliva, C. Pellecchia, A. J. Sivak, and L. A. Cullo, Macromolecules, 23, 2904 (1990).

    Article  CAS  Google Scholar 

  15. J. R. Park, H. S. Jang, S. Y. Kim, and J. K. An, KR-A-10-2006-0038102 (2006).

  16. M. Galimberti, F. Piemontesi, U. Giannini, and E. Albizzati, Macromolecules, 26, 6771 (1993).

    Article  CAS  Google Scholar 

  17. J. V. Seppala, M. Harkonen, and L. Luciani, Makromol. Chem., 190, 2535 (1989).

    Article  CAS  Google Scholar 

  18. M. Harkonen, J. V. Seppala, and T. Vaananen, Makromol. Chem., 192, 721 (1991).

    Article  CAS  Google Scholar 

  19. Y. P. Chen, Z. Q. Fan, J. H. Liao, and S. Q. Liao, J. Appl. Polym. Sci., 102, 1768 (2006).

    Article  CAS  Google Scholar 

  20. C. Tzoganakis, J. Vlachopoulos, A. E. Hamielec, and D. M. Shinozaki, Polym. Eng. Sci., 29, 390 (1989).

    Article  CAS  Google Scholar 

  21. Y. V. Kissin, R. Ohnishi, and T. Konakazawa, Macromol. Chem. Phys., 205, 284 (2004).

    Article  CAS  Google Scholar 

  22. W. R. Krigbaum and I. Uematsu, J. Polym. Sci. Part A, 3, 767 (1965).

    CAS  Google Scholar 

  23. E. Albizzati, U. Giannini, G. Morini, A. C. Smith, and R. C. Ziegler, Ziegler Catalysts, G. Fink, R. Mulhaupt, and H. H. Britzinger, Eds., Springer-Verlag, Berlin, 1995, pp 413–425.

    Google Scholar 

  24. Y. V. Kissin, J. Polym. Sci. Part A: Polym. Chem., 41, 1745 (2003).

    Article  CAS  Google Scholar 

  25. B. Liu, T. Nitta, H. Nakatani, and M. Terano, Macromol. Chem. Phys., 204, 395 (2003).

    Article  CAS  Google Scholar 

  26. M. Kakugo, T. Miyatake, Y. Naito, and K. Mizunuma, Macromolecules, 21, 314 (1988).

    Article  CAS  Google Scholar 

  27. K. Soga and T. Shiono, Transition Metal Catalyzed Polymerizations, R. P. Quirk, Ed., Cambridge University Press, Cambridge, 1988, pp 266–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun-Byoung Yoon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, HX., Lee, YJ., Park, JR. et al. Control of molecular weight distribution for polypropylene obtained by commercial ziegler-natta catalyst: Effect of electron donor. Macromol. Res. 19, 622–628 (2011). https://doi.org/10.1007/s13233-011-0614-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0614-5

Keywords