Skip to main content

Advertisement

Log in

Preparation and characterizations of anisotropic chitosan nanofibers via electrospinning

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report the preparation of anisotropic chitosan nanofibers prepared using an electrospinning technique. The effect of electrospinning on the formation of nanofibers was examined from results of bulk chitosan. The morphological, structural characterizations and thermal properties of the chitosan bulk and electrospun nanofibers were analyzed by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), Fourier transform infrared (FTIR), and Raman spectroscopy. Matrixassisted laser desorption ionization time-of-flight (MALDI-TOF) was performed to accurately characterize the high aspect ratio nanofiber structure by the direct identification of mass resolved chains. FE-SEM showed that the electrospun chitosan nanofibers had diameters ranging from 10 to 1,200 nm with an anisotropic nature. MALDI-TOF revealed the presence of lower mass group protonated amino groups, which was the main constituent for the formation of the ultrafine nanofibers in chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. K. Suh and H. W. T. Matthew, Biomaterials, 21, 2589 (2000).

    Article  CAS  Google Scholar 

  2. G. Borchard, Adv. Drug Deliver. Rev., 52, 145 (2001).

    Article  CAS  Google Scholar 

  3. K. Tomihata and Y. Ikada, Biomaterials, 18, 567 (1997).

    Article  CAS  Google Scholar 

  4. S. De Vrieze, P. Westbroek, T. Van Camp, and L. Van Langenhove, J. Mater. Sci., 42, 8029 (2007).

    Article  CAS  Google Scholar 

  5. A. Matsuda, G. Kagata, R. Kino, and J. Tanaka, J. Nanosci. Nanotechnol., 7, 852 (2007).

    Article  CAS  Google Scholar 

  6. H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim, Macromol. Res., 15, 65 (2007).

    CAS  Google Scholar 

  7. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).

    Article  CAS  Google Scholar 

  8. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  9. D. Li, Y. Wang, and Y. Xia, Nano Lett., 3, 1167 (2003).

    Article  CAS  Google Scholar 

  10. J. D. Schiffman and C. L. Schauer, Biomacromolecules, 8, 594 (2007).

    Article  CAS  Google Scholar 

  11. L. Martinova and D. Lubasova, RJTA, 12, 72 (2008).

    CAS  Google Scholar 

  12. S. S. Ojna, D. R. Stevens, T. J. Hoffman, K. Stano, R. Klossner, M. C. Scott, W. Krause, L. I. Clarke, and R. E. Gorga, Biomacromolecules, 9, 2523 (2008).

    Article  Google Scholar 

  13. Y. T. Jia, J. Gong, X. H. Gu, H. Y. Kim, J. Dong, and X. Y. Shen, Carbohydr. Polym., 67, 403 (2007).

    Article  CAS  Google Scholar 

  14. Y. Ma, T. Zhou, and C. Zhao, Carbohydr. Res., 343, 230 (2008).

    Article  CAS  Google Scholar 

  15. K. T. Shalumon, K. H. Aunlekha, C. M. Girish, R. Prasanth, S. V. Nair, and R. Jayakumar, Carbohydr. Polym., doi:10.1016/j.carbpol.2009.11.039.

  16. X. Geng, O. H. Kwon, and J. Jang, Biomaterials, 26, 5427 (2005).

    Article  CAS  Google Scholar 

  17. B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, and W. H. Park, Polymer, 45, 7137 (2004).

    Article  CAS  Google Scholar 

  18. A. R. Sarasam, R. K. Krishnaswamy, and S. V. Madihally, Biomacromolecules, 7, 1131 (2006).

    Article  CAS  Google Scholar 

  19. H. R. Allcock, F. W. Lampe, and J. E. Mark, Contemporary Polymer Chemistry, 3rd Ed., Pearson Education, Inc., New Jersey, 2003, p.647.

    Google Scholar 

  20. P. Sangsanoh and P. Supaphol, Biomacromolecules, 7, 2710 (2006).

    Article  CAS  Google Scholar 

  21. I. J. Garrido, V. I. Gonzalez, J. M. M. Arechederra, and J. M. B. Rienda, Carbohydr. Polym., 68, 173 (2007).

    Article  Google Scholar 

  22. Y. Shigemasa, H. Matsuura, H. Sashiwa, and H. Saimoto, Int. J. Biol. Macromol., 18, 237 (1996).

    Article  CAS  Google Scholar 

  23. J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 877 (2004).

    Article  CAS  Google Scholar 

  24. Y. Liu, L. Cui, F. Guan, Y. Gao, N. E. Heidn, L. Zhu, and H. Fong, Macromolecules, 40, 6283 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirmala, R., Il, B.W., Navamathavan, R. et al. Preparation and characterizations of anisotropic chitosan nanofibers via electrospinning. Macromol. Res. 19, 345–350 (2011). https://doi.org/10.1007/s13233-011-0402-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0402-2

Keywords

Navigation