Skip to main content
Log in

Effect of aliphatic spacer length on the electrorheological properties of side-chain liquid crystalline polymer-silica composite suspensions

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Side-chain liquid crystal polymer (SCLCP)-silica composites were synthesized to enhance the electrorheological (ER) response by forming polar liquid crystal polymer-inorganic composites. Three types of SCLCP-silica composites were prepared to examine the effect of the aliphatic spacer length on the ER response of the composite suspensions. The SCLCPs consisted of a polymethacrylate backbone carrying cyanobiphenyl mesogenic groups as the side chains with various lengths of aliphatic spacer. The ER response increased with increasing electric field strength and decreasing aliphatic spacer length. The increasing ER response with decreasing spacer length was consistent with the behavior of the composite suspension dielectric properties. With the same spacer length, the ER response increased with increasing SCLCP/silica ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Aileen and C. T. Imrie, Macromolecules, 28, 3617 (1995).

    Article  Google Scholar 

  2. C. Hsu, Prog. Polym. Sci., 22, 829 (1997).

    Article  CAS  Google Scholar 

  3. W. M. Winslow, J. Appl. Phys., 20, 1137 (1949).

    Article  CAS  Google Scholar 

  4. Z. P. Shulman, R. G. Gorodkin, and E. V. Korobko, J. Non-Newton. Fluid Mech., 8, 29 (1981).

    Article  Google Scholar 

  5. Y. F. Deinega and G. V. Vinogradov, Rheol. Acta, 23, 636 (1984).

    Article  CAS  Google Scholar 

  6. H. Block and J. P. Kelly, J. Phys. D: Appl. Phys., 21, 1661 (1988).

    Article  CAS  Google Scholar 

  7. Y. D. Kim and D. H. Park, Macromol. Res., 10, 215 (2002).

    CAS  Google Scholar 

  8. Y. D. Kim and I. C. Song, J. Mater. Sci., 37, 5051 (2002).

    Article  CAS  Google Scholar 

  9. X. P. Zhao and J. B. Yin, J. Ind. Eng. Chem., 12, 184 (2006).

    CAS  Google Scholar 

  10. F. Ikazaki, A. Kawai, K. Uchida, T. Kawakami, K. Edamura, K. Sakurai, H. Anzai, and Y. Asako, J. Phys. D: Appl. Phys., 31, 336 (1998).

    Article  CAS  Google Scholar 

  11. Y. Otsubo and K. Edamura, J. Colloid Interface Sci., 168, 230 (1994).

    Article  CAS  Google Scholar 

  12. S. G. Kim, J. W. Kim, H. J. Choi, M. S. Suh, M. J. Shin, and M. S. Jhon, Colloid Polym. Sci., 278, 894 (2000).

    Article  CAS  Google Scholar 

  13. D. J. Yoon and Y. D. Kim, J. Colloid Interface Sci., 303, 573 (2006).

    Article  CAS  Google Scholar 

  14. D. J. Yoon and Y. D. Kim, J. Mater. Sci., 42, 5534 (2007).

    Article  CAS  Google Scholar 

  15. Y. D. Kim and J. C. Chung, Korean J. Chem. Eng., 27, 32 (2010).

    Article  CAS  Google Scholar 

  16. Y. D. Kim and J. H. Kim, Colloid Polym. Sci., 286, 631 (2008).

    Article  CAS  Google Scholar 

  17. S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi, and M. S. Jhon, Syn. Metals, 152, 337 (2005).

    Article  CAS  Google Scholar 

  18. M. S. Cho, H. J. Choi, and M. S. Jhon, Polymer, 46, 11484 (2005).

    Article  CAS  Google Scholar 

  19. F. F. Fang, B. M. Lee, and H. J. Choi, Macromol. Res., 18, 99 (2010).

    Article  CAS  Google Scholar 

  20. H. J. Choi and M. S. Choi, Soft Matter, 5, 1562 (2009).

    Article  CAS  Google Scholar 

  21. I. S. Lee, M. S. Cho, and H. J. Choi, Polymer, 46, 1317 (2005).

    Article  CAS  Google Scholar 

  22. H. Orihara, T. Kawasaki, M. Doi, and A. Inoue, J. Appl. Polym. Sci., 86, 3673 (2002).

    Article  CAS  Google Scholar 

  23. K. Tanaka, Y. Oiwa, R. Akiyama, and A. Kubono, Polym. J., 30, 171 (1998).

    Article  CAS  Google Scholar 

  24. K. Kaneko, Y. Miwa, and N. Nakamura, Polymer, 48, 7264 (2007).

    Article  CAS  Google Scholar 

  25. Y. C. Chiang, A. M. Jamieson, Y. Zhao, A. M. Kasko, and C. Pugh, Polymer, 43, 4887 (2002).

    Article  CAS  Google Scholar 

  26. V. P. Shibaev, S. G. Kostromin, and N. A. Plate, Eur. Polym. J., 18, 651 (1982).

    Article  CAS  Google Scholar 

  27. D. J. Klingenberg, D. Dierking, and C. F. Zukoski, J. Chem. Soc. Faraday Trans., 87, 425 (1991).

    Article  CAS  Google Scholar 

  28. A. F. Sprecher, J. D. Carlson, and H. Conrad, Mater. Sci. Eng., 95, 187 (1987).

    Article  CAS  Google Scholar 

  29. M. S. Cho, Y. H. Cho, H. J. Choi, and M. S. Jhon, Langmuir, 19, 5875 (2003).

    Article  CAS  Google Scholar 

  30. M. S. Cho, H. J. Choi, and K. To, Macromol. Rapid Commun., 19, 271 (1998).

    Article  CAS  Google Scholar 

  31. J. W. Goodwin, G. M. Markham, and B. Vincent, J. Phys. Chem. B, 101, 1961 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Dae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.D., Jung, J.C. Effect of aliphatic spacer length on the electrorheological properties of side-chain liquid crystalline polymer-silica composite suspensions. Macromol. Res. 18, 1203–1208 (2010). https://doi.org/10.1007/s13233-010-1207-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-1207-4

Keywords

Navigation