Skip to main content
Log in

The unique behaviors of biopolymers, BSA and fucoidan, in a model emulsion system under different pH circumstances

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A combination of biopolymers of both proteins and polysaccharides are commonly used to increase the stability in many colloidal food systems. This study examined the effect of fucoidan on the surface activity of bovine serum albumin (BSA) and the emulsifying properties of BSA-stabilized oil-in-water emulsions at different pH. BSA lowered the surface tension significantly from 71 to 55 mN at the air-water interface, but fucoidan did not. In the experiment in the BSA-fucoidan mixture, there was no synergistic effect between BSA and fucoidan, indicating that fucoidan was not surface-active. At pH 5.0, only the BSA-added emulsion was drastically destabilized due to protein aggregation and desolubilization. However, the addition of 0.05 wt% fucoidan reduced the creaming rate, recovered the emulsion phase stability, and reduced the droplet size significantly. Interestingly, at pH 3.0, which is below pI, either the BSA-added emulsion or BSA-fucoidan mixed emulsion remained stable, suggesting the contribution of strong repulsions with positive and negative charges into the emulsion. Consequently, although fucoidan is not surface-active, this anionic polysaccharide acts as an electrolyte that can form a highly negative environment, and contribute to stabilizing the emulsion under any pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aoki, E. A. Decker, and D. J. McClements, Food Hydrocolloid, 19, 209 (2005).

    Article  CAS  Google Scholar 

  2. S. Ogawa, E. A. Decker, and D. J. McClements, J. Agric. Food Chem., 51, 5522 (2003).

    Article  CAS  Google Scholar 

  3. D. J. McClements, Food Emulsions: Principles, Practices, and Techniques, 2nd edition, Boca Raton, Florida, CRC Press, 2004.

    Google Scholar 

  4. T. Liu, J. Fang, Y. Zhang, and Z. Zeng, Macromol. Res., 16, 670 (2008).

    CAS  Google Scholar 

  5. Y. K. Joung, J. S. Lee, S. J. Lee, and K. D. Park, Macromol. Res., 16, 66 (2008).

    CAS  Google Scholar 

  6. M. H. Choi, S. Jeong, S. I. Nam, S. E. Shim, and Y. H. Chang, Macromol. Res., 17, 943 (2009).

    CAS  Google Scholar 

  7. S. M. Lee, E. S. Yoo, H. D. Ghim, and S. J. Lee, Macromol. Res., 17, 168 (2009).

    CAS  Google Scholar 

  8. R. Chanamai, G. Horn, and D. J. McClements. J. Colloid Interface Sci., 247, 167 (2002).

    Article  CAS  Google Scholar 

  9. D. J. McClements, Biotechnol. Adv., 24, 621 (2006).

    Article  CAS  Google Scholar 

  10. E. Dickinson, Food Hydrocolloid, 23, 1473 (2009).

    Article  CAS  Google Scholar 

  11. E. Dickinson, Food hydrocolloid, 17, 25 (2003).

    Article  CAS  Google Scholar 

  12. M. Nakauma, T. Funami, S. Noda, S. Ishihara, S. A.-Assaf, K. Nishinari, and G. O. Phillips, Food Hydrocolloid, 22, 1254 (2008).

    Article  CAS  Google Scholar 

  13. J. Rangsansarid and K. Fukada, J. Colloid Interface Sci., 316, 779 (2007).

    Article  CAS  Google Scholar 

  14. L. Jourdain, M. E. Leser, C. Schmitt, M. Michel, and E. Dickinson, Food Hydrocolloid, 22, 647 (2008).

    Article  CAS  Google Scholar 

  15. A. Kulmyrzaev, R. Chanamai, and D. J. McClements, Food Res. Intern., 33, 15 (2000).

    Article  CAS  Google Scholar 

  16. A. Gharsallaoui, R. Saurel, O. Chambin, E. Cases, A. Voilley, and P. Cayot, Food Chem., in Press, Corrected Proof, Available online (2009).

  17. I. Mandala, C. Michon, and B. Launay, Carbohyd. Polym., 58, 285 (2004).

    Article  CAS  Google Scholar 

  18. A. A. Perez, C. R. Carrara, C. C. Sánchez, J. M. Rodráguez, Patino, and L.G. Santiago, Food Chem., 116, 104 (2009)

    Article  CAS  Google Scholar 

  19. J.-L Doublier, C. Garnier, D. Renard, and C. Sanchez, Curr. Opin. Colloid Interface Sci., 5, 202 (2000).

    Article  CAS  Google Scholar 

  20. C. G. de Kruif and R. Tuinier, Food Hydrocolloid, 15, 555 (2001).

    Article  Google Scholar 

  21. H. Singh, M. Tamehana, Y. Hemar, and P. A. Munro, Food Hydrocolloid, 17, 539 (2003).

    Article  CAS  Google Scholar 

  22. H. Singh, M. Tamehana, Y. Hemar, and P. A. Munro, Food Hydrocolloid, 17, 549 (2003).

    Article  CAS  Google Scholar 

  23. T. Giancone, E. Torrieri, P. Masi, and C. Michon, Food Hydrocolloid, 23, 1263 (2009).

    Article  CAS  Google Scholar 

  24. S. J. McClellan and E. I. Franses, Colloids Surf. B: Biointerfaces, 28, 63 (2003).

    Article  CAS  Google Scholar 

  25. D. Y. Kim and W.-S. Shin, Macromol. Res., 17, 128 (2009).

    CAS  Google Scholar 

  26. R. Pongsawatmanit, T. Harnsilawat, and D. J. McClements, Colloids Surf. A: Physicochem. Eng. Aspects, 287, 59 (2006).

    Article  CAS  Google Scholar 

  27. Y. S. Gu, E. A. Decker, and D. J. McClements, Food Hydrocolloid, 19, 83 (2005).

    Article  CAS  Google Scholar 

  28. J. Surh, E. A. Decker, and D. J. McClements, Food Hydrocolloid, 20, 607 (2006).

    Article  CAS  Google Scholar 

  29. T. Peters, Jr., Adv. Protein Chem., 37, 161 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weon-Sun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DY., Shin, WS. & Hong, WS. The unique behaviors of biopolymers, BSA and fucoidan, in a model emulsion system under different pH circumstances. Macromol. Res. 18, 1103–1108 (2010). https://doi.org/10.1007/s13233-010-1101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-1101-0

Keywords

Navigation