Self assembled block copolymer gate insulators with cylindrical nanostructures for pentacene thin film transistor


This study examined the effect of a chemically nanostructured surface of cylinder forming poly(styreneb-methyl methacrylate) (PS-b-PMMA) and poly(styrene-b-4vinyl pyridine) (PS-b-P4VP) block copolymer gate dielectrics on the performance of the bottom gate pentacene organic thin film transistor (OTFT). The field effect mobility of pentacene is affected mainly by the chemical properties of the top skin of a block copolymer layer. In the case of PS-b-PMMA with cylindrical PMMA microdomains that are located very closely at the block copolymer-pentacene interface because the surface energy of PMMA is similar to that of PS, the field effect mobility in general corresponds to the area averaged value of the two mobilities with the pure PS and PMMA layer. On the other hand, PS-b-P4VP copolymer results in a similar field effect mobility to that of the pure PS layer because the cylindrical P4VP microdomains are embedded in the PS matrix of which the surface energy is much lower than that of P4VP. The orientation of the cylindrical PMMA microdomains with respect to the surface also affects the field effect mobility, where the PMMA microdomains are aligned perpendicular to the surface, gave rise to a mobility approximately 50% higher than those parallel to the surface. The composite model with parallel and series resistance units offers qualitative understanding of these results.

This is a preview of subscription content, access via your institution.


  1. (1)

    C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002).

    Article  CAS  Google Scholar 

  2. (2)

    A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater., 17, 1705 (2005).

    Article  CAS  Google Scholar 

  3. (3)

    K. Shin, C. Yang, S. Y. Yang, H. Jeon, and C. E. Park, Appl. Phys. Lett., 88, 072109 (2006).

    Article  Google Scholar 

  4. (4)

    L. L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Adv. Mater., 16, 1609 (2004).

    Article  CAS  Google Scholar 

  5. (5)

    S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett., 85, 4400 (2004).

    Article  CAS  Google Scholar 

  6. (6)

    S. E. Fritz, T. W. Kelley, and C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).

    Article  CAS  Google Scholar 

  7. (7)

    P. S. Jo, J. Sung, C. Park, E. Kim, D. Y. Ryu, S. Pyo, H.-C. Kim, and J. M. Hong, Adv. Func. Mater., 18, 1202 (2008).

    Article  CAS  Google Scholar 

  8. (8)

    M. Brinkmann, S. Graff, C. Straupe, J.-M. Wittmann, C. Chaumont, F. Nuesch, A. Aziz, M. Schaer, and L. Zuppiroli, J. Phys. Chem. B, 107, 10531 (2003).

    Article  CAS  Google Scholar 

  9. (9)

    W.-S. Hu, Y.-F. Lin, Y.-T. Tao, Y.-J. Hsu, and D.-H. Wei, Macromolecules, 38, 9617 (2005).

    Article  CAS  Google Scholar 

  10. (10)

    M. L. Swiggers, G. Zia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, B. T. Weslowski, R. N. Shashidhar, and C. S. Dulcey, Appl. Phys. Lett., 79, 1300 (2001).

    Article  CAS  Google Scholar 

  11. (11)

    S. Y. Yang, K. Shin, and C. E. Park, Adv. Funct. Mater., 15, 1806 (2005).

    Article  CAS  Google Scholar 

  12. (12)

    J.-H. Bae, J. Kim, W.-H. Kim, and S.-D. Lee, Jpn. J. Appl. Phys., 46, 385 (2007).

    Article  CAS  Google Scholar 

  13. (13)

    H. Yang, T. J. Shin, M.-M. Ling, K. Cho, C. Y. Ryu, and Z. Bao, J. Am. Chem. Soc., 127, 11542 (2005).

    Article  CAS  Google Scholar 

  14. (14)

    H. Yang, S. H. Kim, L. Yang, S. Y. Yang, and C. E. Park, Adv. Mater., 19, 2868 (2007).

    Article  CAS  Google Scholar 

  15. (15)

    S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett., 88, 162109 (2006).

    Article  Google Scholar 

  16. (16)

    C. Kim, A. Facchetti, and T. J. Marks, Adv. Mater., 19, 2561 (2007).

    Article  CAS  Google Scholar 

  17. (17)

    C. Park, J. Yoon, and E. L. Thomas, Polymer, 44, 6725 (2003).

    Article  CAS  Google Scholar 

  18. (18)

    P. Mansky, Y. Liu, E. Huang, T. P. Russell, and C. Hawker, Science, 275, 1458 (1997).

    Article  CAS  Google Scholar 

  19. (19)

    D. Schrader, in Polymer Handbook, J. Brandrup, E. H. Immergut, and E. A. Grulke, Eds., 4th Eds., Hoboken, Wiley, 1999.

    Google Scholar 

  20. (20)

    B. Yoon, H. Acharya, G. Lee, H.-C. Kim, J. Huh, and C. Park, Soft Matter, 4, 1467 (2008).

    Article  CAS  Google Scholar 

  21. (21)

    C. Kim, A. Facchetti, and T. J. Marks, Science, 318, 76 (2007).

    Article  CAS  Google Scholar 

  22. (22)

    X. Peng, G. Horowitz, D. Fichou, and F. Garnier, Appl. Phys. Lett., 57, 2013 (1990).

    Article  CAS  Google Scholar 

  23. (23)

    M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 128, 12851 (2006).

    Article  CAS  Google Scholar 

  24. (24)

    S. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, J. Am. Chem. Soc., 124, 4084 (2004).

    Article  Google Scholar 

  25. (25)

    R. Ruiz, A. C. Mayer, G. C. Malliaras, B. Nickel, G. Scoles, H. Kim, R. L. Headrick, and Z. Islam, Appl. Phys. Lett., 85, 4926 (2004).

    Article  CAS  Google Scholar 

  26. (26)

    J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Adv. Funct. Mater., 13, 199 (2003).

    Article  CAS  Google Scholar 

  27. (27)

    K. S. Lee, T. J. Smith, K. C. Dickey, J. E. Yoo, K. J. Stevenson, and Y.-L. Loo, Adv. Funct. Mater., 16, 2409 (2006).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Cheolmin Park.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jo, P.S., Park, Y.J., Kang, S.J. et al. Self assembled block copolymer gate insulators with cylindrical nanostructures for pentacene thin film transistor. Macromol. Res. 18, 777–786 (2010).

Download citation


  • OTFT
  • block copolymer
  • nanostructure
  • orientation
  • gate dielectric
  • pentacene
  • orientation