Skip to main content
Log in

Enhancement of thermal stability and phase relaxation behavior of chitosan dissolved in aqueous l-lactic acid: Using ‘silver nanoparticles’ as nano filler

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Chitosan films with various compositions of silver nanoparticles were prepared by solution casting with an aqueous solution of chitosan and l-lactic acid. The chitosan/Ag nanocomposites were characterized by wide angle X-ray diffraction (WAXD) and UV-vis spectroscopy. An analysis of the surface topography and size of the Ag nanoparticles (≤100 nm) were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Thermogravimetric analysis (TGA/DTA) confirmed the increase in thermal stability with increasing Ag nanoparticle content in the nanocomposites. Dynamic thermal analysis (DMA) was used to examine the phase relaxation behavior of chitosan and its nanocomposites. The conductivity of chitosan/Ag nanocomposites was considered with respect to the frequency. Contact angle measurements were used to characterize the surface twistability, surface cleanliness, and hydrophilic/hydrophobic nature of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. F. Robert, Chitin Chemistry, The MacMillan Press Ltd., London, 1992.

    Google Scholar 

  2. B. Krajewska, Sep. Purificat. Technol., 41, 305 (2005).

    Article  CAS  Google Scholar 

  3. S. S. Koide, Nutrition Res., 18, 1091 (1998).

    Article  CAS  Google Scholar 

  4. K. M. Park, J. K. Jung, K. D. Park, S. Y. Lee, and M. C. Lee, Macromol. Res., 16, 517 (2008).

    CAS  Google Scholar 

  5. R. Marguerite, Prog. Polym. Sci., 31, 603 (2006).

    Article  Google Scholar 

  6. E. I. Rabea, M. E. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, Biomacromolecules, 4, 1457 (2003).

    Article  CAS  Google Scholar 

  7. K. Jeong, W. Lee, J. Cha, C. R. Park, Y. W. Cho, and I. C. Kwon, Macromol. Res., 16, 57 (2008).

    CAS  Google Scholar 

  8. H. Jung, M. K. Jang, J. W. Nah, and Y. B. Kim, Macromol. Res., 17, 265 (2009).

    CAS  Google Scholar 

  9. D. B. Worrell, C. M. S. Carrington, and D. J. Huber, Posth. Bio. & Technol., 25, 33 (2002).

    Article  CAS  Google Scholar 

  10. J. Ma, H. Wang, B. He, and J. Chen, Biomaterials, 22, 331 (2001).

    Article  CAS  Google Scholar 

  11. J. K. F. Suh and H. W. T. Matthew, Biomaterials, 21, 2589 (2000).

    Article  CAS  Google Scholar 

  12. A. E. Elcin, Y. M. Elcin, and G. D. Pappas, Neurol. Res., 20, 648 (1998).

    CAS  Google Scholar 

  13. Y. M. Elcin, V. Dixit, and G. Gitnick, Artific. Organs, 22, 837 (1998).

    Article  CAS  Google Scholar 

  14. R. Aparna, R. Sarasam, R. K. Krishnaswamy, and S. V. Madihally, Biomacromolecules, 7, 1131 (2006).

    Article  Google Scholar 

  15. Y. Xu, X. Ren, and M. A. Hanna, J. Appl. Polym. Sci., 99, 1684 (2006).

    Article  CAS  Google Scholar 

  16. K. Ogura, T. Kanamoto, M. Itoh, H. Miyashiro, and K. Tanaka, Polym. Bull., 2, 301 (1980).

    Article  CAS  Google Scholar 

  17. S. K. Liao, C.-C. Hung, and M.-F. Lin, Polymer(Korea), 28, 433 (2004).

    CAS  Google Scholar 

  18. M. T. Ko, W. H. Jo, S. C. Lee, and H. C. Kim, Proc. of the fourth Asian textile conference, 95 (1997).

  19. J. S. Ahn, H. K. Choi, and C. S. Cho, Biomaterials, 22, 923 (2001).

    Article  CAS  Google Scholar 

  20. D. Yanming, R. Yonghong, H. Wang, Y. Zhao, and D. Bi, J. Appl. Polym. Sci., 93, 1553 (2004).

    Article  Google Scholar 

  21. M. Mucha and A. Pawlak, Thermochim. Acta, 427, 69 (2005).

    Article  CAS  Google Scholar 

  22. S. Kumar, J. P. Jog, and U. Natarajan, J. Appl. Polym. Sci., 89, 1186 (2003).

    Article  CAS  Google Scholar 

  23. Y. Mo and I. Morke, Surf. Sci., 133, 452 (1983).

    Article  Google Scholar 

  24. G. De, J. Appl. Phys., 80, 6374 (1996).

    Article  Google Scholar 

  25. N. Grier, Silver and its Compound, 3rd edition, S. S. Block, Ed., Lea & Febiger, Philadelphia, 1983, pp. 375–389.

    Google Scholar 

  26. T. H. Kim, K. Kim, and G. H. Park, Macromol. Res., 17, 770 (2009).

    CAS  Google Scholar 

  27. J. Kusnestov, N. Elomaa, and P. Martikainen, Water Res., 35, 4127 (2001).

    Google Scholar 

  28. J. Keheler, J. Bashant, L. Johnson, and Y. Li, World J. Microbiol. Biotechnol., 18, 133 (2002).

    Article  Google Scholar 

  29. G. Cao, Ed., Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Imperial College Press, London, 2004.

    Google Scholar 

  30. D. Depan, A. P. Kumar, and R. P. Singh, J. Biomed. Mater. Res. A, 78, 372 (2006).

    Google Scholar 

  31. S. Malynych and G. Chumanov, J. Am. Chem. Soc., 125, 2896 (2003).

    Article  CAS  Google Scholar 

  32. B. S. Liu and T. B. Huang, Macromol. Biosci., 8, 932 (2008).

    Article  CAS  Google Scholar 

  33. W. U. Huynh, X. Peng, and A. P. Alivisatos, Adv. Mater., 11, 923 (1999).

    Article  CAS  Google Scholar 

  34. L. Geo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. L. Wong, Chem. Mater., 12, 2268 (2000).

    Article  Google Scholar 

  35. K. Ogawa, S. Hirano, T. Miyanishi, T. Yui, and T. Watanabe, Macromolecules, 17, 973 (1984).

    Article  CAS  Google Scholar 

  36. H. Saito, T. Ryoko, and K. Ogawa, Macromolecules, 20, 2424 (1987).

    Article  CAS  Google Scholar 

  37. G. L. Clark and A. F. Smith, J. Phys. Chem., 40, 863 (1937).

    Article  Google Scholar 

  38. R. J. Samules, J. Polym. Sci., Polym. Phys., 19, 1081 (1981).

    Google Scholar 

  39. G. Cardenenas, J. C. Paredes, G. Cabrea, and P. Casals, J. Appl. Polym. Sci., 86, 2742 (2002).

    Article  Google Scholar 

  40. C. Peniche-Covas, W. Arguelles-Monal, and J. S. Roman, Polym. Deg. Stab., 39, 21 (1993).

    Article  CAS  Google Scholar 

  41. N. M. Langer and C. A. Wilkie, Polym. Adv. Technol., 9, 290 (1998).

    Article  CAS  Google Scholar 

  42. D. A. Costa and C. M. F. Oliveira, J. Appl. Polym. Sci., 81, 2556 (2001).

    Article  CAS  Google Scholar 

  43. I. C. Um, T. H. Kim, H. Y. Kweon, C. S. Ki, and Y. H. Park, Macromol. Res., 17, 785 (2009).

    CAS  Google Scholar 

  44. T. Murayama, Dynamic Mechanical Analysis, Chap. III, 1978.

  45. S. A. Bradley and S. H. Carr, J. Polym. Sci., Phys. Ed., 14, 111 (1976).

    Article  CAS  Google Scholar 

  46. M. Pizzoli, G. Ceccorulli, and M. Scandola, Carbohydr. Res., 222, 205 (1991).

    Article  CAS  Google Scholar 

  47. J. A. Ratto, C. C. Chen, and R. B. Blumstein, J. Appl. Polym. Sci., 59, 1451 (1996).

    Article  CAS  Google Scholar 

  48. K. Jonscher, Nature, 253, 717 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Pal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, V.K., Pandey, A.K., Singh, R.P. et al. Enhancement of thermal stability and phase relaxation behavior of chitosan dissolved in aqueous l-lactic acid: Using ‘silver nanoparticles’ as nano filler. Macromol. Res. 18, 713–720 (2010). https://doi.org/10.1007/s13233-010-0801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0801-9

Keywords

Navigation