Skip to main content
Log in

On L(2, 1)-labeling of zero-divisor graphs of finite commutative rings

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

For a simple graph \(\mathcal {G}= (\mathcal {V}, \mathcal {E})\), an L(2, 1)-labeling is an assignment of non-negative integer labels to vertices of \(\mathcal {G}\). An L(2, 1)-labeling of \(\mathcal {G}\) must satisfy two conditions: adjacent vertices in \(\mathcal {G}\) should get labels which differ by at least two, and vertices at a distance of two from each other should get distinct labels. The \(\lambda \)-number of \(\mathcal {G}\), denoted by \(\lambda (\mathcal {G})\), represents the smallest positive integer \(\ell \) for which an L(2, 1)-labeling exists, the vertices of \(\mathcal {G}\) are provided labels from the set \(\{0, 1, \dots , \ell \}\). Let \(\Gamma (R)\) be a zero-divisor graph of a finite commutative ring R with unity. In \(\Gamma (R)\), vertices represent zero-divisors of R, and two vertices x and y are adjacent if and only if \(xy = 0\) in R. The methodology of the research involves a detailed investigation into the structural aspects of zero-divisor graphs associated with specific classes of local and mixed rings, such as \(\mathbb {Z}_{p^n}\), \(\mathbb {Z}_{p^n} \times \mathbb {Z}_{q^m}\), and \(\mathbb {F}_{q}\times \mathbb {Z}_{p^n}\). This exploration leads us to compute the exact value of L(2, 1)-labeling number of these graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alali, A. S., Ali, S., Hassan, N., Mahnashi, A. M., Shang, Y., Assiry, A.: Algebraic Structure Graphs over the Commutative Ring\(\mathbb{Z}_m\): Exploring Topological Indices and Entropies Using \(\mathbb{M}\)-Polynomials. Mathematics 11 (18) 3833 (2023).

  2. Ali, A., Raja, R.: \(L(2,1)\)-abeling of some zero-divisor graphs associated with commutative rings. Commun. Comb. Optm. https://doi.org/10.22049/cco.2023.28810.1730 (2023).

  3. Anderson, D.F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings and Boolean algebras. J. Pure Appl. Algebra 180 221-241 (2003).

    Article  MathSciNet  Google Scholar 

  4. Anderson, D.F., Livingston, P. S.: The zero-divisor graph of a commutative ring. J. Algebra 217 434-447 (1999).

    Article  MathSciNet  Google Scholar 

  5. Beck, I.: Coloring of commutative rings. J. Algebra 116 208-226 (1988).

    Article  MathSciNet  Google Scholar 

  6. Bodlaender, H. L., Kloks, A. J. J., Tan, R. B., Van Leeuwen, J.: Approximations for \(\lambda \)-coloring of graphs. The Computer Journal 47 193-204 (2004).

    Article  Google Scholar 

  7. Cayley, A.: Desiderata and suggestions: No. 2. The Theory of groups: graphical representation. American J. Math. 1 (2) 174-176 (1878).

  8. Chakrabarty, I., Ghosh, S., Sen, M.K.: Undirected power graphs of semigroups. Semigroup Forum 78 410-426 (2009).

    Article  MathSciNet  Google Scholar 

  9. Georges, J.P., Mauro, D.W., Whittlesey, M. A.: Relating path covering to vertex labelings with a condition at distance two. Disc. Math. 135 103-111 (1994).

    Article  Google Scholar 

  10. Griggs, J., Yeh, R.: labeling graphs with a condition at distance two. SIAM J. Disc. Math. 5 586-595 (1992) .

    Article  Google Scholar 

  11. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for \(L(2,1)\)-labeling of trees. Algorithmica 66 654-681 (2013).

    Article  MathSciNet  Google Scholar 

  12. Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for \(L(2,1)\)-labeling of graphs. Algorithmica 59 169-194 (2011).

    Article  MathSciNet  Google Scholar 

  13. Kelarev, A.V., Quinn, S. J.: A combinatorial property and power graphs of groups. Contr. to gen. algebra 12 (58) 3-6 (2000).

    Google Scholar 

  14. Ma, X., Feng, M., Wang, K.: Lambda number of the power graph of a finite group. J. Algeb. Comb. 53 (3) 743-754 (2021).

    Article  MathSciNet  Google Scholar 

  15. Mazumdar, E., Raja, R.: Group-annihilator graphs realised by finite abelian groups and its properties. Graphs and Combinatorics 38 (1) 1-24 (2022).

    Article  MathSciNet  Google Scholar 

  16. Meyer, F.D., Meyer, L.D.: Zero-divisor graphs of semigroups. J. Algebra 283 190-198 (2005).

    Article  MathSciNet  Google Scholar 

  17. Raja, R.: Total perfect codes in graphs realized by commutative rings. Transactions of Comb. 11 (4) 295-307 (2022).

    MathSciNet  Google Scholar 

  18. Rather, B. A., Pirzada, S., Naikoo, T. A., Shang, Y.: On Laplacian eigenvalues of the zero-divisor graph associated to the ring of integers modulo \(n\). Mathematics 9 (5) 482 (2021).

    Article  Google Scholar 

  19. Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Commun. Algebra 31 4425-4443 (2003).

    Article  MathSciNet  Google Scholar 

  20. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Disc. Math. 93 229-245 (1991).

    Article  MathSciNet  Google Scholar 

  21. Shang, Y.: A note on the commutativity of prime near-rings. Algebra Colloquium, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University 22 (3) 361-366 (2015).

    MathSciNet  Google Scholar 

  22. Zahirović, S.: The power graph of a torsion-free group determines the directed power graph. Disc. App. Math. 305 109-118 (2021).

    Article  MathSciNet  Google Scholar 

  23. Zhou, S.: labeling Cayley graphs on abelian groups. SIAM J. Disc. Math. 19 985-1003 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The first author’s research is supported by the University Grants Commission, Govt. of India under UGC-Ref. No. 191620023547, and the second author’s research work is funded by the Department of Atomic Energy, Govt. of India under S.No. [02011/15/2023NBHM(R.P)/R &D II/5866].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameez Raja.

Ethics declarations

Competing interest

There is no conflict of interest to declare.

Additional information

Communicated by Shariefuddin Pirzada.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Raja, R. On L(2, 1)-labeling of zero-divisor graphs of finite commutative rings. Indian J Pure Appl Math (2024). https://doi.org/10.1007/s13226-024-00574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-024-00574-8

Keywords

Mathematics Subject Classification

Navigation