Skip to main content

An Expository Note on Wavelets and Graph \(C^{*}\)-algebras

Abstract

This article provides an expository review of the relationship between graph \(C^{*}\)-algebras and the wavelet theory. This connection was first established by O. Bratteli and P.E.T. Jorgensen in the late \(90'\)s. Various mathematicians paid attention to this connection in the past 25 years, and the area has become active and dynamic now. The major contributors include O. Bratteli, P. E. T. Jorgensen, C. Farsi, E. Gillaspy, S. Kang, J. Packer, M. Marcolli and A. M. Paolucci. Our aim is to provide an expository survey in this direction.

This is a preview of subscription content, access via your institution.

References

  1. T. Bates, D. Pask, I. Raeburn, and W. Szymanski, The\({C}^*\)-algebras of row-finite graphs, New York J. Math 6 (2000), no. 307, 324.

    MathSciNet  MATH  Google Scholar 

  2. S. Bezuglyi and P.E.T. Jorgensen, Representations of Cuntz-Krieger relations, dynamics on bratteli diagrams, and path-space measures, (2015), 57–88.

  3. A. Boggess and F. J. Narcowich, A first course in wavelets with Fourier analysis, second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2009.

    MATH  Google Scholar 

  4. O. Bratteli, D.E. Evans, and P.E.T. Jorgensen, Compactly supported wavelets and representations of the Cuntz relations, Appl. Comput. Harmon. Anal. 8 (2000), no. 2, 166–196.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale\(N\), Integral Equations and Operator Theory 28 (1997), no. 4, 382–443.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Bratteli and P.E.T. Jorgenson, A connection between multiresolution wavelet theory of scale n and representations of the Cuntz algebra\(o_n\), (1996).

  7. O. Bratteli and P.E.T. Jorgenson, Iterated function systems and permutation representations of the Cuntz algebra, 1996.

  8. O. Bratteli and P.E.T. Jorgenson, Wavelets through a looking glass: The world of the spectrum, Springer Science & Business Media, 2013.

  9. M. Crovella and E. Kolaczyk, Graph wavelets for spatial traffic analysis, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), vol. 3, IEEE, 2003, pp. 1848–1857.

  10. I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  11. P.Y. Dibal, E. N. Onwuka, J. Agajo, and C. O. Alenoghena, Analysis of wavelet transform design via filter bank technique, (2019).

  12. D. E. Dutkay, J. Haussermann, and P.E.T. Jorgensen, Atomic representations of Cuntz algebras, J. Math. Anal. Appl. 421 (2015), no. 1, 215–243.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. E. Dutkay, G. Picioroaga, and M.S. Song, Orthonormal bases generated by Cuntz algebras, J. Math. Anal. Appl. 409 (2014), no. 2, 1128–1139.

    Article  MathSciNet  MATH  Google Scholar 

  14. D.E. Dutkay and P.E.T. Jorgenson, Wavelets on fractals, Revista Matematica Iberoamericana 22 (2003), 131–180.

  15. D.E. Dutkay and P.E.T. Jorgenson, Monic representations of the Cuntz algebra and Markov measures, Journal of Functional Analysis 4 (2014), no. 267, 1011–1034.

  16. M. Enomoto, A graph theory for\({C}^*\)-algebras, Math. Japon. 25 (1980), 435–442.

    MathSciNet  MATH  Google Scholar 

  17. C. Farsi, E. Gillapsy, S. Kang and J. Packer, Wavelets and graph\({C}^*\)-algebras, Excursions in Harmonic Analysis, Volume 5, Springer, 2017, pp. 35–86.

  18. M. W. Frazier, An introduction to wavelets through linear algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999.

  19. D. Goncalves, H. Li, and D. Royer, Branching systems for higher-rank graph\({C}^*\)-algebras, Glasg. Math. J. 60 (2018), no. 3, 731–751.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.C. Guido, A note on a practical relationship between filter coefficients and scaling and wavelet functions of discrete wavelet transforms, Applied Mathematics Letters 24 (2011), no. 7, 1257–1259.

    Article  MathSciNet  Google Scholar 

  21. E.C. Jeong, Irreducible representations of the Cuntz algebra\( o_n\), Proc. Amer. Math. Soc. 127 (1999), no. 12, 3583–3590.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Jonsson, Wavelets on fractals and Besov spaces, J. Fourier Anal. Appl. 4 (1998), no. 3, 329–340.

    Article  MathSciNet  MATH  Google Scholar 

  23. P.E.T. Jorgensen, Minimality of the data in wavelet filters, Adv. Math. 159 (2001), no. 2, 143–228, With an appendix by Brian Treadway.

  24. P.E.T. Jorgensen, Use of operator algebras in the analysis of measures from wavelets and iterated function systems, (2005), 13–26.

  25. K. Kawamura, The Perron-Frobenius operators, invariant measures and representations of the Cuntz-Krieger algebras, Journal of Mathematical Physics 46 (2005), 083514.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Kumjian, D. Pask, and I. Raeburn, Cuntz–Krieger algebras of directed graphs, pacific journal of mathematics 184 (1998), no. 1, 161–174.

  27. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of\(L^2(\mathbb{R})\), Transactions of the American mathematical society 315 (1989), no. 1, 69–87.

    MathSciNet  MATH  Google Scholar 

  28. M. Marcolli and A. M. Paolucci, Cuntz-Krieger algebras and wavelets on fractals, Complex Analysis and Operator Theory 5 (2011), no. 1, 41–81.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gerard J. Murphy, \(C^*\)-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.

    Google Scholar 

  30. I. Raeburn, Graph algebras, no. 103, American Mathematical Soc., 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kiran Kumar.

Additional information

Communicated by Jaydeb Sarkar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anjali, V.A., Kumar, V.B.K. & Shankar, P. An Expository Note on Wavelets and Graph \(C^{*}\)-algebras. Indian J Pure Appl Math (2022). https://doi.org/10.1007/s13226-022-00351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-022-00351-5

Keywords

  • Graph \(C^{*}\)-algebras
  • Wavelets
  • Multiresolution Analysis

Mathematics Subject Classification

  • Primary
  • Secondary