Skip to main content
Log in

Hilbert evolution algebras and its connection with discrete-time Markov chains

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

Evolution algebras are non-associative algebras. In this work we provide an extension of this class of algebras, in a framework of Hilbert spaces, and illustrate the applicability of our approach by discussing a connection with discrete-time Markov chains with infinite countable state space. Specifically, if we associate to each possible state of such a Markov process a generator of the Hilbert evolution algebra structure, then the whole dynamics of the process can be described through consecutive applications of the evolution operator, provided certain boundedness conditions on the transition probabilities hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cadavid, P., Rodiño Montoya, M. L., & Rodriguez, P. M. (2020). The connection between evolution algebras, random walks, and graphs. J. Algebra Appl. 19(2), 2050023.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cadavid, P., Rodiño Montoya, M. L., & Rodriguez, P. M. (2021). On the isomorphisms between evolution algebras of graphs and random walks. Linear Multilinear Algebra 69(10), 1858–1877.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cadavid, P., Rodiño Montoya, M. L., & Rodriguez, P. M. (2020). Characterization theorems for the space of derivations of evolution algebras associated to graphs. Linear Multilinear Algebra 68(7), 1340-1354.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabrera Casado, Y., Cadavid, P., Rodiño Montoya, M. L., & Rodriguez, P. M. (2021). On the characterization of the space of derivations in evolution algebras. Annali di Matematica. 200, 737-755.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabrera, Y., Siles, M., & Velasco, M. V. (2016). Evolution algebras of arbitrary dimension and their decomposition. Linear Algebra Appl. 495, 122-162.

    Article  MathSciNet  MATH  Google Scholar 

  6. Camacho, L. M., Gómez, J. R., Omirov, B. A., & Turdibaev, R. M. (2013). Some properties of evolution algebras. Bull. Korean Math. Soc. 50(5), 1481-1494.

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, J. M., Ladra, M., Omirov, B.A., & Rozikov, U.A. (2014). On Evolution Algebras, Algebra Colloq. 21, 331.

    Article  MathSciNet  MATH  Google Scholar 

  8. Elduque A., & Labra, A. (2015). Evolution algebras and graphs. J. Algebra Appl. 14, 1550103.

    Article  MathSciNet  MATH  Google Scholar 

  9. Elduque A., & Labra, A. (2016). On nilpotent evolution algebras. Linear Algebra Appl. 505, 11-31.

    Article  MathSciNet  MATH  Google Scholar 

  10. Falcón, O.J., Falcón, R.M., & Núñez, J. (2017). Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field. J. Algebra 472, 573-593.

    Article  MathSciNet  MATH  Google Scholar 

  11. Halmos, P.R. (2012). A Hilbert space problem book, Vol. 19, Springer Science and Business Media.

  12. Heil, C. (2019). Introduction to Real Analysis, Vol. 280, Springer.

  13. Labra, A., Ladra, M., & Rozikov, U. A. (2014). An evolution algebra in population genetics. Linear Algebra Appl. 457, 348-362.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mellon, P., & Velasco, V. (2019). Analytic aspects of evolution algebras. Banach J. Math. Anal. 13(1), 113-132.

    Article  MathSciNet  MATH  Google Scholar 

  15. Reis. T., & Cadavid, P. (2020). Derivations of evolution algebras associated to graphs over a field of any characteristic. Linear Multilinear Algebra. Advance online publication. https://doi.org/10.1080/03081087.2020.1818673

    Book  MATH  Google Scholar 

  16. Ross, S. M. (2010). Introduction to Probability Models, 10th Ed., Academic Press.

  17. J. P. Tian, Evolution algebras and their applications, Springer-Verlag Berlin Heidelberg, 2008.

    Book  MATH  Google Scholar 

  18. Tian, J. P., & Vojtechovsky, P. (2006). Mathematical concepts of evolution algebras in non-Mendelian genetics. Quasigroups Related Systems 1(14) , 111-122.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out during a visit of P.C. at the Universidade Federal de Pernambuco (UFPE); and visits of P.M.R. at the Universidade Federal do ABC (UFABC) and at the Universidad Nacional de la Patagonia “San Juan Bosco” (UNPSJB). The visit at UNPSJB was during the realization of the School EMALCA 2019. The authors are grateful with these institutions, and with the organizers of the School, for their hospitality and support. Part of this work has been supported by Fundação de Amparo á Pesquisa do Estado de São Paulo-FAPESP (Grant 2017/10555-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Rodriguez.

Additional information

Communicated by Rahul Roy.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, S.J., Cadavid, P. & Rodriguez, P.M. Hilbert evolution algebras and its connection with discrete-time Markov chains. Indian J Pure Appl Math 54, 883–894 (2023). https://doi.org/10.1007/s13226-022-00304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-022-00304-y

Keywords

Mathematics Subject Classification

Navigation