Skip to main content
Log in

On the genus of dot product graph of a commutative ring

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the topological graph theoretic properties such as planarity, toroidality and bi-toroidality of the total dot product graph of a commutative ring. In particular, we characterize an isomorphism class of commutative rings R for which TD(R) has genus one or two. This leads to the characterization of all commutative rings whose ZD(R) has genus one or two. It is shown that for any commutative ring R, TD(R) is a bi-toroidal graph if and only if R is ring isomorphic to \(\frac{{\mathbb {Z}}_2\left[ x\right] }{\left\langle x^2+x+1\right\rangle }\times \frac{{\mathbb {Z}}_2\left[ x\right] }{\left\langle x^2+x+1\right\rangle }\) and \({\mathbb {Z}}_5\times {\mathbb {Z}}_5.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra, 270 (2003), 169–180.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra, 43 (1) (2015), 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc., 68 (1962), 565–568.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Belshoff and J. Chapman, Planar zero-divisor graphs, J. Algebra, 316 (1) (2007), 471–480.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bloomfield and C. Wickham, Local rings with genus two zero divisor graph, Comm. Algebra, 38 (2010), 2965–2980.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks/ Cole, Monterey, CA, 1986.

    MATH  Google Scholar 

  7. F. Harary, Graph Theory, Addison-Wesley, Reading, Ma, 1969.

    Book  MATH  Google Scholar 

  8. K. Selvakumar and V. Ramanathan, Classification of non-local rings with genus one \(3\)-zero-divisor hypergraphs, Comm. Algebra, 45 (1) (2017), 275–284.

    Article  MathSciNet  MATH  Google Scholar 

  9. N.O. Smith, Planar zero-divisor graphs, Int. J. Comm. Rings, 2 (4) (2002), 177–188.

    MATH  Google Scholar 

  10. H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra, 304 (2) (2006), 666-678.

    Article  MathSciNet  MATH  Google Scholar 

  11. H.-J. Wang and N.O. Smith, Commutative rings with toroidal zero-divisor graphs, Houston J. Math., 36 (1) (2010), 1–31.

    MathSciNet  MATH  Google Scholar 

  12. A.T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  13. C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra, 36 (2) (2008), 325–345.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work of the second author is supported by the Dr. D.S. Kothari Postdoctoral Fellowship (No.F.4-2/2006 (BSR)/MA/ 17-18/ 0045), University Grants Commission, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramanathan.

Additional information

Communicated by Rahul Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, K., Ramanathan, V. & Selvaraj, C. On the genus of dot product graph of a commutative ring. Indian J Pure Appl Math 54, 558–567 (2023). https://doi.org/10.1007/s13226-022-00275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-022-00275-0

Keywords

Mathematics Subject Classification

Navigation