Skip to main content
Log in

Lie symmetries, group classification and conserved quantities of dispersionless Manakov–Santini system in (2+1)-dimension

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

A member of Manakov–Santini (MS) hierarchy is investigated in this work using Lie group analysis and the multiplier approach. The admitted 11-dimensional Lie algebra for the MS system has been proved to be completely solvable on basis of the existence of chain of ideals. The optimal list of inequivalent one-dimensional subalgebras are constructed from adjoint actions collected in a table. The method for construction of similar list in 2-dimension has also been discussed in detail. The subalgebras so obtained are used to give out several inequivalent reductions and subsequently some exact solutions are reported. In addition to usual Lie symmetry analysis, the infinite set of non-trivial conservation laws are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.

    MATH  Google Scholar 

  2. P. Olver, Applications of Lie Groups to Differential Equations, Vol. 107, Springer-Verlag Inc., New York, 1986.

    MATH  Google Scholar 

  3. G. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Vol. 154, Springer-Verlag Inc., New York, 2002.

    MATH  Google Scholar 

  4. D. Levi, P. Winternitz, Nonclassical symmetry reduction: Example of the Boussinesq equation, Journal of Physics A: Mathematical and General 22 (15) (1989) 2915–2924.

    MathSciNet  MATH  Google Scholar 

  5. P. Clarkson, P. Winternitz, Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation, Physica D : Nonlinear Phenomena 49 (3) (1991) 257–272.

    MathSciNet  MATH  Google Scholar 

  6. B. Champagne, W. Hereman, P. Winternitz, The computer calculation of Lie point symmetries of large systems of differential equations, Computer Physics Communications 66 (2) (1991) 319–340.

    MathSciNet  MATH  Google Scholar 

  7. B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable?, Journal of Mathematical Physics 27 (12) (1986) 2848–2852.

    MathSciNet  MATH  Google Scholar 

  8. P. Winternitz, Lie groups and solutions of nonlinear differential equations, in: Nonlinear Phenomena, Springer, Berlin, Heidelberg, 1983, pp. 263–305.

  9. M. Nucci, P. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions: An example of the Fitzhugh-Nagumo equation, Physics Letters A 164 (1) (1992) 49–56.

    MathSciNet  Google Scholar 

  10. P. Clarkson, E. Mansfield, T. Priestley, Symmetries of a class of nonlinear third-order partial differential equations, Mathematical and Computer Modelling 25 (8-9) (1997) 195–212.

    MathSciNet  MATH  Google Scholar 

  11. P. Clarkson, New similarity solutions and Painlevé analysis for the symmetric regularized long wave and the modified Benjamin-Bona-Mahoney equations, Journal of Physics A: Mathematical and General 22 (18) (1989) 3821–3848.

    MathSciNet  MATH  Google Scholar 

  12. P. Clarkson, New similarity solutions for the modified Boussinesq equation, Journal of Physics A: Mathematical and General 22 (13) (1989) 2355–2367.

    MathSciNet  MATH  Google Scholar 

  13. S. Lou, A note on the new similarity reductions of the Boussinesq equation, Physics Letters A 151 (3-4) (1990) 133–135.

    MathSciNet  Google Scholar 

  14. M. Ablowitz, A. Ramani, H. Segur, A connection between nonlinear evolution equations and ordinary differential equation of Painlev\(\acute{\rm {e}}\) type I, Journal of Mathematical Physics 21 (4) (1980) 715–721.

    MathSciNet  MATH  Google Scholar 

  15. S. Sil, T. R. Sekhar, Nonclassical symmetry analysis, conservation laws of one-dimensional macroscopic production model and evolution of nonlinear waves, Journal of Mathematical Analysis and Applications 497 (1) (2021) 124847.

    MathSciNet  MATH  Google Scholar 

  16. T. R. Sekhar, P. Satapathy, Group classification for isothermal drift flux model of two phase flows, Computers & Mathematics with Applications 72 (5) (2016) 1436–1443.

    MathSciNet  MATH  Google Scholar 

  17. P. Satapathy, T. R. Sekhar, Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model, Applied Mathematics and Computation 334 (2018) 107–116.

    MathSciNet  MATH  Google Scholar 

  18. M. Singh, A revisit of symmetry analysis and group classifications of boiti leon pempinelli system in (2+ 1)-dimensions, arXiv preprint arXiv:2104.10002.

  19. M. Singh, Infinite dimensional symmetry group, kac-moody-virasoro algebras and integrability of kac-wakimoto equation, arXiv preprint arXiv:2012.15069.

  20. S. Sil, T. R. Sekhar, D. Zeidan, Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation, Chaos, Solitons & Fractals 139 (2020) 110010.

    MathSciNet  MATH  Google Scholar 

  21. S. Sil, T. R. Sekhar, Nonlocally related systems, nonlocal symmetry reductions and exact solutions for one-dimensional macroscopic production model, The European Physical Journal Plus 135 (6) (2020) 1–23.

    Google Scholar 

  22. S. V. Manakov, P. M. Santini, Cauchy problem on the plane for the dispersionless Kadomtsev-Petviashvili equation, JETP letters 83 (10) (2006) 462–466.

    Google Scholar 

  23. S. V. Manakov, P. M. Santini, A hierarchy of integrable partial differential equations in 2+ 1 dimensions associated with one-parameter families of one-dimensional vector fields, Theoretical and Mathematical Physics 152 (1) (2007) 1004–1011.

    MathSciNet  MATH  Google Scholar 

  24. S. Manakov, P. Santini, On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking, Journal of Physics A: Mathematical and Theoretical 41 (5) (2008) 055204.

    MathSciNet  MATH  Google Scholar 

  25. M. Dunajski, An interpolating dispersionless integrable system, Journal of Physics A: Mathematical and Theoretical 41 (31) (2008) 315202.

    MathSciNet  MATH  Google Scholar 

  26. M. Dunajski, E. Ferapontov, B. Kruglikov, On the Einstein-Weyl and conformal self-duality equations, Journal of Mathematical Physics 56 (8) (2015) 083501.

    MathSciNet  MATH  Google Scholar 

  27. S. V. Manakov, P. M. Santini, Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Physics Letters A 359 (6) (2006) 613–619.

    MathSciNet  MATH  Google Scholar 

  28. M. S. Bruzén, P. G. Estévez, M. Gandarias, J. Prada, 1+ 1 spectral problems arising from the Manakov–Santini system, Journal of Physics A: Mathematical and Theoretical 43 (49) (2010) 495204.

    MathSciNet  MATH  Google Scholar 

  29. A. Kara, On the reduction of some dispersionless integrable systems, Acta Applicandae Mathematicae 132 (1) (2014) 371–376.

    MathSciNet  MATH  Google Scholar 

  30. V. E. Zakharov, Dispersionless limit of integrable systems in 2+ 1 dimensions, in: Singular limits of dispersive waves, Springer, 1994, pp. 165–174.

  31. E. V. Ferapontov, A. Moro, Dispersive deformations of hydrodynamic reductions of (2+ 1) D dispersionless integrable systems, Journal of Physics A: Mathematical and Theoretical 42 (3) (2008) 035211.

    MathSciNet  MATH  Google Scholar 

  32. I. M. Krichever, The \(\tau \)-function of the universal whitham hierarchy, matrix models and topological field theories, Communications on Pure and Applied Mathematics 47 (4) (1994) 437–475.

    MathSciNet  MATH  Google Scholar 

  33. K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, Reviews in Mathematical Physics 7 (05) (1995) 743–808.

    MathSciNet  MATH  Google Scholar 

  34. M. Dunajski, L. J. Mason, P. Tod, Einstein–Weyl geometry, the dKP equation and twistor theory, Journal of Geometry and Physics 37 (1) (2001) 63–93.

    MathSciNet  MATH  Google Scholar 

  35. M. V. Pavlov, Integrable hydrodynamic chains, Journal of Mathematical Physics 44 (9) (2003) 4134–4156.

    MathSciNet  MATH  Google Scholar 

  36. M. Dunajski, A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type, Journal of Geometry and Physics 51 (1) (2004) 126–137.

    MathSciNet  MATH  Google Scholar 

  37. L. Bogdanov, On a class of reductions of the Manakov–Santini hierarchy connected with the interpolating system, Journal of Physics A: Mathematical and Theoretical 43 (11) (2010) 115206.

    MathSciNet  MATH  Google Scholar 

  38. M. Marvan, A. Sergyeyev, Recursion operators for dispersionless integrable systems in any dimension, Inverse problems 28 (2) (2012) 025011.

    MathSciNet  MATH  Google Scholar 

  39. H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  40. N. A. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation 14 (9) (2009) 3507–3529.

    MathSciNet  MATH  Google Scholar 

  41. F. Galas, E. Richter, Exact similarity solutions of ideal MHD equations for plane motions, Physica D: Nonlinear Phenomena 50 (2) (1991) 297–307.

    MathSciNet  MATH  Google Scholar 

  42. S. Coggeshall, J. Meyer-ter Vehn, Group-invariant solutions and optimal systems for multidimensional hydrodynamics, Journal of Mathematical Physics 33 (10) (1992) 3585–3601.

    MathSciNet  MATH  Google Scholar 

  43. I. I. Ryzhkov, On the normalizers of subalgebras in an infinite Lie algebra, Communications in Nonlinear Science and Numerical Simulation 11 (2) (2006) 172–185.

    MathSciNet  MATH  Google Scholar 

  44. H. Koetz, A technique to classify the similarity solutions of nonlinear partial (integro-) differential equations. II. Full optimal subalgebraic systems, Zeitschrift für Naturforschung A 48 (4) (1993) 535–550.

    Google Scholar 

  45. S. C. Anco, G. Bluman, Direct construction of conservation laws from field equations, Physical Review Letters 78 (15) (1997) 2869–2873.

    MathSciNet  MATH  Google Scholar 

  46. S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations part I: Examples of conservation law classifications, European Journal of Applied Mathematics 13 (05) (2002) 545–566.

    MathSciNet  MATH  Google Scholar 

  47. S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations part II: General treatment, European Journal of Applied Mathematics 13 (05) (2002) 567–585.

    MathSciNet  MATH  Google Scholar 

  48. M. Nadjafikhah, V. Shirvani-Sh, Lie symmetries and conservation laws of the Hirota–Ramani equation, Communications in Nonlinear Science and Numerical Simulation 17 (11) (2012) 4064–4073.

    MathSciNet  MATH  Google Scholar 

  49. V. Shirvani-Sh, M. Nadjafikhah, Conservation laws and exact solutions of the Whitham-type equations, Communications in Nonlinear Science and Numerical Simulation 19 (7) (2014) 2212–2219.

    MathSciNet  MATH  Google Scholar 

  50. M. Singh, R. Gupta, On Painlevé analysis, symmetry group and conservation laws of Date–Jimbo–Kashiwara–Miwa equation, International Journal of Applied and Computational Mathematics 4 (3) (2018) 88.

    MATH  Google Scholar 

  51. M. Singh, R. Gupta, Group classification, conservation laws and Painlevé analysis for Klein-Gordon-Zakharov equations in (3+1)-dimension, Pramana-Journal of Physics In press.

  52. G. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Vol. 168, Springer, New York, 2010.

    MATH  Google Scholar 

  53. D. Poole, W. Hereman, The homotopy operator method for symbolic integration by parts and inversion of divergences with applications, Applicable Analysis 89 (4) (2010) 433–455.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their valuable comments and suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, the 333 Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Fu Tian.

Additional information

Communicated by V D Sharma.

Appendix

Appendix

$$\begin{aligned} \chi _{1}(x,y)=&\frac{ \left( a_{{3}}a_{{10}}-{a_{{10}}}^{2} \right) x-ya_{{9}}a_{{10}}-a_{{9}}}{a_{{10}} \left( a_{{3}}-a_{{10}} \right) } \end{aligned}$$
(43)
$$\begin{aligned} \chi _{{2}} \left( x,y \right) =&\frac{1}{ \left( a_{{3}}-2\,a_{{10}} \right) \left( a_{{3}}- a_{{10}} \right) ^{2} \left( 2\,a_{{3}}-a_{{10}} \right) }\Big (a_{{9}} \left( \left( 4\,{a_{{ 3}}}^{3}-14\,{a_{{3}}}^{2}a_{{10}}+14\,a_{{3}}{a_{{10}}}^{2}-4\,{a_{{ 10}}}^{3} \right) \right. x \nonumber \\&\left. + \left( -2\,{a_{{3}}}^{2}a_{{9}}+5\,a_{{3}}a_{{9}} a_{{10}}-2\,a_{{9}}{a_{{10}}}^{2} \right) y+2\,a_{{3}}a_{{9}}-a_{{9}}a _{{10}} \right) \Big ) \end{aligned}$$
(44)
$$\begin{aligned} \chi _{{3}} \left( x,y,t \right) =&-\ln \left( t \right) \left( \ln \left( t \right) a_{{8}}a_{{9}}t+\ln \left( t \right) {a_{{9}}}^{2}y -a_{{4}}t-2\,xa_{{9}}-a_{{5}}y \right) \end{aligned}$$
(45)
$$\begin{aligned} \chi _{{4}} \left( x,y,t \right) =&\,{\frac{t \left( -8\,{t}^{2}a_{ {5}}a_{{6}}+24\,ya_{{5}}{a_{{6}}}^{2}+9\,{t}^{3}-36\,tya_{{6}}+72\,x{a _{{6}}}^{2} \right) }{24{a_{{6}}}^{3}}}\end{aligned}$$
(46)
$$\begin{aligned} \chi _{{5}} \left( x,y,t \right) =&-\,{\frac{t \left( 4\,{t}^{2}a_{{ 8}}-3\,ta_{{4}}a_{{6}}-6\,ya_{{5}}a_{{6}}+6\,ty-12\,xa_{{6}} \right) }{6{a_{{6}}}^{2}}}\end{aligned}$$
(47)
$$\begin{aligned} \chi _{{6}} \left( x,y,t \right) =&\,{\frac{t \left( -8\,{t}^{2}a_{ {5}}a_{{6}}+24\,ya_{{5}}{a_{{6}}}^{2}+9\,{t}^{3}-36\,tya_{{6}}-36\,ta_ {{7}}a_{{6}}+72\,x{a_{{6}}}^{2} \right) }{24{a_{{6}}}^{3}}}\end{aligned}$$
(48)
$$\begin{aligned} \chi _{{7}} \left( x,y,t \right) =&-{\frac{t \left( -ya_{{5}}a_{{6}}+ty +a_{{7}}t-2\,xa_{{6}} \right) }{{a_{{6}}}^{2}}}\end{aligned}$$
(49)
$$\begin{aligned} \chi _{{8}} \left( x,y,t \right) =&-\,{\frac{t \left( {t}^{2}a_{{5}} -3\,a_{{5}}ya_{{6}}-3\,xa_{{6}} \right) }{3{a_{{6}}}^{2}}}\end{aligned}$$
(50)
$$\begin{aligned} \chi _{{9}} \left( x,y,t \right) =&-\,{\frac{x \left( xa_{{5}}t-2\,a _{{5}}ya_{{7}}-xa_{{7}} \right) }{2{a_{{7}}}^{2}}}\end{aligned}$$
(51)
$$\begin{aligned} \alpha =&\,\frac{2a_{9}^2}{(a_{3}-a_{10})(a_{3}-2a_{10})},\,\,\,\beta =\,\frac{a_{9}}{a_{3}-a_{10}},\,\,\, \gamma =\,\frac{a_{3}a_{9}}{a_{3}-a_{10}},\,\,\,\delta =\,\frac{2a_{9}^{2}}{a_{10}(a_{3}-a_{10})(a_{3}-2a_{10})}\end{aligned}$$
(52)
$$\begin{aligned} \theta =&\,\frac{a_{9}}{a_{10}(a_{3}-a_{10})} \end{aligned}$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Tian, SF. Lie symmetries, group classification and conserved quantities of dispersionless Manakov–Santini system in (2+1)-dimension. Indian J Pure Appl Math 54, 312–329 (2023). https://doi.org/10.1007/s13226-022-00255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-022-00255-4

Keywords

Mathematics Subject Classification

Navigation