Skip to main content
Log in

Monotonicity criterion and integrals formulas for the Mittag-Leffler function with applications

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove the monotonicity property of the ratios of Mittag-Leffler functions. As applications, new functional inequalities (such as Turán type inequalities) for the Mittag-Leffler function are obtained. Moreover, geometrical convexity and log-concavity properties for some classes of functions related to the Mittag-Leffler function are researched. Furthermore, new formulas and inequalities for some integrals involving the Mittag-Leffler functions are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Á. Baricz, Turán type inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 136 (2008), 3223–3229.

    Article  Google Scholar 

  2. Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math., 26 (2008), 279–293.

    Article  MathSciNet  Google Scholar 

  3. R. W. Barnard, M. B. Gordy, K.C. Richards, A note on Turán type and mean inequalities for the Kummer function, J. Math. Anal. Appl. 349 (1) (2009), 259–263.

    Article  MathSciNet  Google Scholar 

  4. S. Gerhold, Asymptotics for a variant of the Mittag-Leffler function, Integral Trans. Special functs, 23 (6) (2012), 397–403.

    Article  MathSciNet  Google Scholar 

  5. R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag Berlin Heidelberg 2014.

    MATH  Google Scholar 

  6. K. Mehrez, S. M. Sitnik, Functional inequalities for the Mittag-Leffler functions, Results Math., 72 (1-2) (2017), 703–714.

    Article  MathSciNet  Google Scholar 

  7. K. Mehrez, Turán type inequalities for \(q\)-Mittag-Leffler and \(q\)-Wright functions, Math. Inequal. Appl. 21 (4) (2018), 1135–1151.

    MathSciNet  MATH  Google Scholar 

  8. K. Mehrez, S. M. Sitnik, Proofs of some conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions and related Turán-type inequalities, Analysis, 36 (4) (2016), 263–268.

    MathSciNet  MATH  Google Scholar 

  9. K. Mehrez, Functional inequalities for Wright functions, Integral Trans. Special Funct. 28 (2) (2017), 130–144.

    Article  MathSciNet  Google Scholar 

  10. K. Mehrez, New Integral representations for the Fox-Wright functions and its applications, J. Math. Anal. Appl. 468 (2018), 650–673.

    Article  MathSciNet  Google Scholar 

  11. K. Mehrez, New properties for several classes of functions related to the Fox-Wright functions, Journal of Computational and Applied Mathematics, 362 (2019), 161–171.

    Article  MathSciNet  Google Scholar 

  12. S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), 278–301.

    Article  MathSciNet  Google Scholar 

  13. J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-type inequalities, J. Math. Anal. Appl. 374 (2011), 516–528.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. S. S. R. K. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, K. Monotonicity criterion and integrals formulas for the Mittag-Leffler function with applications. Indian J Pure Appl Math 53, 392–404 (2022). https://doi.org/10.1007/s13226-021-00212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00212-7

Keywords

Mathematics Subject Classifications

Navigation