Skip to main content
Log in

Diophantine approximation and continued fraction expansion for quartic power series over \(\pmb {\mathbb {F}}_{3}\)

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The main contribution of this paper is providing families of examples conjecturally generalizing the almost unique known so far example introduced first by Mills and Robbins (J Number Theory 23:388–404, 1986) of quartic power series over \({\mathbb {F}}_3(T)\) having an approximation exponent equal to 2 in relation with Roth’s theorem as proved by Lasjaunias (J Number Theory 65:206–224 1997), and having a continued fraction expansion with an unbounded sequence of partial quotients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayadi, Kh.: On the approximation exponent of some hyperquadratic power series. Bull. Belg. Math. Soc. Simon Stevin. 22, 511–520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayadi, Kh., Lasjaunias, A.: On a quartic equation and two families of hyperquadratic continued fractions in power series fields. Moscou journal of combinatoric and number theory. 6, 14–37 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Baum, L., Sweet, M.: Continued fraction of algebraic power series in characteristic 2. Annals of Mathematics 103, 593–610 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buck, W., Robbins, D.: The continued fraction of an algebraic power series satisfying a quartic equation. Journal of Number Theory. 50, 335–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lasjaunias, A.: Diophantine Approximation and Continued Fraction Expansions of Algebraic Power Series in Positive Characteristic. Journal of Number Theory. 65, 206–224 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lasjaunias, A., de Mathan, B.: Thue’s Theorem in Positive Characteristic. Journal für die reine und angewandte Mathematik. 473, 195–206 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Lasjaunias, A.: A survey of Diophantine approximation in fields of power series. Monatshefte für Mathematik. 130, 211–229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lasjaunias, A.: On the continued fraction of the unique root in \(\mathbb{F}_(p)\) of the equation \(x^4+x^2-Tx-1/12=0\) and other related hyperquadratic expansions. Finite Fields and their Applications. 18, 26–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mahler, K.: On a theorem of Liouville in fields of positive characteristic. Canadian Journal of Mathematics. 1, 397–400 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Mathan, B.: Approximation exponents for algebraic functions. Acta Arithmetica. 60, 359–370 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Mathan, B.: Irrationality Measures and Transcendence in Positive Characteristic. Journal of Number Theory. 54, 93–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Osgood, C.: Effective bounds on the “diophantine approximation” of algebraic functions over fields of arbitrary characteristic and applications to differential equations. Indagationes Mathematicae. 37, 105–119 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mills, W., Robbins, D.: Continued fractions for certain algebraic power series. Journal of Number Theory. 23, 388–404 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roth, K.: Rational approximation to algebraic numbers. Mathematika. 2, 1–20 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmidt, W.: On continued fractions and Diophantine approximation in power series fields. Acta Arithmetica. 95, 139–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Thakur, D.: Function Field Arithmetic. World Scientific. (2004)

  17. Uchiyama, S.: On Thue-Siegle-Roth theorem. Proc. Japan Acad. 38, 1–2 (1960)

    Google Scholar 

  18. Voloch, J. F.: Diophantine approximation in positive characteristic. Periodica Mathematica Hungarica. 19, 217–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Ayadi.

Additional information

Communicated by B. Sury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, K., Azaza, A. & Beldi, S. Diophantine approximation and continued fraction expansion for quartic power series over \(\pmb {\mathbb {F}}_{3}\). Indian J Pure Appl Math 53, 968–988 (2022). https://doi.org/10.1007/s13226-021-00203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00203-8

Keywords

Mathematics Subject Classification

Navigation