Skip to main content
Log in

An effective version of the primitive element theorem

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

Let \(\alpha \) and \(\beta \) be two algebraic numbers, \(F={{\mathbb {Q}}}(\alpha ,\beta )\) and \(d=[F:{{\mathbb {Q}}}] \ge 2\). By the primitive element theorem, for all but finitely many rational numbers r we have \(F={{\mathbb {Q}}}(\alpha +r\beta )\). A straightforward argument implies that the number of exceptional r, namely, those \(r \in {{\mathbb {Q}}}\) for which \({{\mathbb {Q}}}(\alpha +r\beta )\) is a proper subfield of F, is at most \((d-1)^2\). We show that the number of exceptional r is at most d. On the other hand, we give an example showing the number of exceptional r can be greater than \(\big (\frac{\log d}{\log \log d}\big )^2\) for infinitely many \(d \in {\mathbb {N}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arnóczki and G. Nyul, Minimal index of bicyclic biquadratic number fields, Rocky Mountain J. Math. 50 (2020), 1–8.

    Article  MathSciNet  Google Scholar 

  2. D. Bagio and A. Paques, A generalized primitive element theorem, Math. J. Okayama Univ. 49 (2007), 171–181.

    MathSciNet  MATH  Google Scholar 

  3. N. Berry, A. Dubickas, N. D. Elkies, B. Poonen and C. J. Smyth, The conjugate dimension of algebraic numbers, Q. J. Math. 55 (2004), 237–252.

    Article  MathSciNet  Google Scholar 

  4. I. Del Corso and R. Dvornicich, Number fields with the same index, Acta Arith. 102 (2002), 323–337.

    Article  MathSciNet  Google Scholar 

  5. M. Drmota and M. Skałba, On multiplicative and linear independence of polynomial roots, in: Contributions to general algebra, 7 (Vienna, 1990), pp. 127–135, Hölder-Pichler-Tempsky, Vienna, 1991.

  6. A. Dubickas, On the degree of a linear form in conjugates of an algebraic number, Illinois J. Math. 46 (2002), 571–585.

    Article  MathSciNet  Google Scholar 

  7. H. H. Kim and Z. Wolske, Number fields with large minimal index containing quadratic subfields, Int. J. Number Theory 14 (2018), 2333–2342.

    Article  MathSciNet  Google Scholar 

  8. H. H. Kim and Z. Wolske, Pure cubic fields with large minimal index, Acta Arith. 182 (2018), 271–277.

    Article  MathSciNet  Google Scholar 

  9. S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer-Verlag, New York, 2002.

  10. J. S. Milne, Fields and Galois Theory (v4.61), Available at https://www.jmilne.org/math/CourseNotes/FT.pdf, 2020.

  11. H. Osada, The Galois groups of the polynomials \(X^n+aX^l+b\), J. Number Theory 25 (1987), 230–238.

    Article  MathSciNet  Google Scholar 

  12. G. A. Pogudin, The primitive element theorem for differential fields with zero derivation on the ground field, J. Pure Appl. Algebra 219 (2015), 4035–4041.

    Article  MathSciNet  Google Scholar 

  13. C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 (1982), 333–346.

    Article  MathSciNet  Google Scholar 

  14. C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory 23 (1986), 243–254.

    Article  MathSciNet  Google Scholar 

  15. J. Sonn and H. Zassenhaus, On the theorem on the primitive element, Amer. Math. Monthly 74 (1967), 407–410.

    Article  MathSciNet  Google Scholar 

  16. B. K. Spearman, Q. Yang and J. Yoo, Minimal indices of pure cubic fields, Arch. Math. (Basel) 106 (2016), 35–40.

    Article  MathSciNet  Google Scholar 

  17. J. L. Thunder and J. Wolfskill, Algebraic integers of small discriminant, Acta Arith. 75 (1996), 375–382.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the referee for some useful remarks. This research has received funding from European Social Fund (Project No. 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artūras Dubickas.

Additional information

Communicated by B. Sury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubickas, A. An effective version of the primitive element theorem. Indian J Pure Appl Math 53, 720–726 (2022). https://doi.org/10.1007/s13226-021-00166-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00166-w

Keywords

Mathematics Subject Classification

Navigation