Skip to main content
Log in

Relations among representations of integers by certain quadratic forms

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

Let \(N(c_1,c_2,\ldots , c_k;n),\) \(r(c_1,c_2,\ldots , c_k;n),\) and \(t(c_1,c_2,\ldots , c_k;n)\) count the representations of a positive integer n in the quadratic forms

$$\begin{aligned}&c_1\left( x_1^2+x_1 x_2+x_2^2\right) +c_2\left( x_3^2+x_3 x_4+x_4^2\right) +\cdots +c_k\big (x_{2k-1}^2+x_{2k-1}x_{2k}+x_{2k}^2\big ), \\&\quad c_1x_1^2+c_2x_2^2+\cdots +c_kx_k^2, \\&\quad c_1x_1(x_1+1)/2+c_2x_2(x_2+1)/2+\cdots +c_kx_k(x_k+1)/2, \end{aligned}$$

respectively, where \(c_i\)’s and \(x_i\)’s are integers. Using Ramanujan’s theta functions \(\varphi (q)\), \(\psi (q)\), Borweins’ cubic theta function a(q), and simple dissecting techniques, we find relations satisfied by \(N(c_1,c_2,\ldots , c_k;n)\), \(r(c_1,c_2,\ldots , c_{2k};n)\), and \(t(c_1,c_2,\ldots , c_{2k};n)\) when \(1<2k \le 8\). We also deduce some new explicit formulas for \(r(c_1,c_2,c_3,c_4;n)\) for some particular n when \(c_i\in \{1,2,3,6,8,9,16,18,24,48\}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiga, C., Cooper, S., & Han, J. H. (2005). A general relation between sums of squares and sums of triangular numbers. International Journal of Number Theory, 1(2), 175–182.

    Article  MathSciNet  Google Scholar 

  2. Alaca, A. (2009). Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9. Acta Arithmetica, 136(2), 151–166.

    Article  MathSciNet  Google Scholar 

  3. Alaca, A. (2011). Representations by quaternary quadratic forms whose coefficients are 1, 4, 9 and 36. Journal of Number Theory, 131(11), 2192–2218.

    Article  MathSciNet  Google Scholar 

  4. Alaca, A. (2018). Representations by quaternary quadratic forms whose coefficients are \(1, 3, 5\) or 15. Integers, 18(A12).

  5. Alaca, A., Alaca, S., Lemire, M. F., & Williams, K. S. (2007). Jacobi’s identity and the representation of integers by certain quaternary quadratic forms. International Journal of Modern Mathematics, 2, 143–176.

    MathSciNet  MATH  Google Scholar 

  6. Alaca, A., Alaca, S., Lemire, M. F., & Williams, K. S. (2007). Nineteen quaternary quadratic forms. Acta Arithmetica, 130(3), 277–310.

    Article  MathSciNet  Google Scholar 

  7. Alaca, A., Alaca, S., Lemire, M. F., & Williams, K. S. (2008). Theta function identities and representations by certain quaternary quadratic forms. International Journal of Number Theory, 4(2), 219–239.

    Article  MathSciNet  Google Scholar 

  8. Alaca, A., Alaca, S., Lemire, M. F., & Williams, K. S. (2008). Theta function identities and representations by certain quaternary quadratic forms. II. International Mathematical Forum, 3, 539–579.

    MathSciNet  MATH  Google Scholar 

  9. Alaca, A., Alaca, S., Lemire, M. F., & Williams, K. S. (2009). The number of representations of a positive integer by certain quaternary quadratic forms. International Journal of Number Theory, 5(1), 13–40.

    Article  MathSciNet  Google Scholar 

  10. Alaca, A., Alaca, S., & Williams, K. S. (2006). On the two-dimensional theta functions of the Borweins. Acta Arithmetica, 124(2), 177–195.

    Article  MathSciNet  Google Scholar 

  11. Alaca, A., Alaca, S., & Williams, K. S. (2007). On the quaternary forms \(x^2+y^2+z^2+5t^2\), \(x^2+y^2+5z^2+5t^2\) and \(x^2+5y^2+5z^2+5t^2\). JP Journal of Algebra, Number Theory and Applications, 9, 37–53.

    MathSciNet  MATH  Google Scholar 

  12. Alaca, A., & Alanazi, J. (2016). Representations by quaternary quadratic forms whose coefficients are 1, 2, 7 or 14. Integers, 16(A55).

  13. Alaca, A., & Altiary, M. (2019). Representations by quaternary quadratic forms with coefficients 1, 2, 5 or 10. Korean Mathematical Society. Communications, 34(1), 27–41.

    MathSciNet  MATH  Google Scholar 

  14. Alaca, A., & Williams, K. S. (2012). On the quaternary forms \(x^2 + y^2 + 2z^2 + 3t^2\), \(x^2 + 2y^2 + 2z^2 + 6t^2\), \(x^2 + 3y^2 + 3z^2 + 6t^2\) and \(x^2 + 3y^2 + 6z^2 + 6t^2\). International Journal of Number Theory, 8(7), 1661–1686.

    Article  MathSciNet  Google Scholar 

  15. Barrucand, P., Cooper, S., & Hirschhorn, M. (2002). Relations between squares and triangles. Discrete Mathematics, 248, 245–247.

    Article  MathSciNet  Google Scholar 

  16. Baruah, N. D., Cooper, S., & Hirschhorn, M. (2008). Sums of squares and sums of triangular numbers induced by partitions of 8. International Journal of Number Theory, 4(4), 525–538.

    Article  MathSciNet  Google Scholar 

  17. Baruah, N. D., Kaur, M., Kim, M., & Oh, B.-K. (2020). Proofs of some conjectures of Z. -H. Sun on relations between sums of squares and sums of triangular numbers. Indian Journal of Pure and Applied Mathematics, 51(1), 11–38.

  18. Cooper, S. (2008). On the number of representations of integers by certain quadratic forms. Bulletin of Australian Mathematical Society, 78, 129–140.

    Article  MathSciNet  Google Scholar 

  19. Cooper, S. (2009). On the number of representations of integers by certain quadratic forms, II. Journal of Combinatorial Number Theory, 1, 153–182.

    MathSciNet  MATH  Google Scholar 

  20. Hirschhorn, M. D. (2017). The power of\(q\). Springer.

  21. Ramakrishnan, B., Sahu, B., & Singh, A. K. (2018). Certain quaternary quadratic forms of level 48 and their representation numbers. arXiv, arXiv:1801.04392.

  22. Ramakrishnan, B., Sahu, B., & Singh, A. K. (2018). Representations of an integer by some quaternary and octonary quadratic forms. In A. Akbary & S. Gun (Eds) Geometry, Algebra, Number Theory, and Their Information Technology Applications. GANITA 2016 (vol 251, pp. 383–409). Springer.

  23. Sun, Z.-H. (2016). Some relations between \(t(a,b,c,d;n)\) and \(N(a,b,c,d;n)\). Acta Arithmetica, 175(3), 269–289.

  24. Sun, Z.-H. (2019). Ramanujan’s theta functions and sums of triangular numbers. International Journal of Number Theory, 15(5), 969–989.

    Article  MathSciNet  Google Scholar 

  25. Sun, Z.-H. (2019). Ramanujan’s theta functions and linear combinations of four triangular numbers. arXiv, arXiv:1812.01109.

  26. Wang, M. & Sun, Z.-H. (2016). On the number of representations of \(n\) as a linear combination of four triangular numbers. International Journal of Number Theory, 12(6), 1641–1662.

    Article  MathSciNet  Google Scholar 

  27. Wang, M. & Sun, Z.-H. (2017). On the number of representations of \(n\) as a linear combination of four triangular numbers II. International Journal of Number Theory, 13(3), 593–617.

    Article  MathSciNet  Google Scholar 

  28. Williams, K. S. (2003). \(n=\triangle +\triangle +2(\triangle +\triangle )\). Far East Journal of Mathematical Sciences (FJMS), 11, 233–240.

    MathSciNet  Google Scholar 

  29. Williams, K. S. (2008). On the representations of a positive integer by the forms \(x^2+y^2+z^2+2t^2\) and \(x^2+2y^2+2z^2+2t^2\). International Journal of Modern Mathematics, 3, 225–230.

    MathSciNet  MATH  Google Scholar 

  30. Williams, K. S. (2011). Number theory in the spirit of Liouville. Cambridge University Press.

  31. Xia, E. X. W. & Zhong, Z. X. (2018). Proofs of some conjectures of Sun on the relations between \(N(a, b, c, d; n)\) and \(t(a, b, c, d; n)\). Journal of Mathematical Analysis and Applications, 463(1), 1–18.

    Article  MathSciNet  Google Scholar 

  32. Yao, O. X. M. (2017). The relations between \(N(a,b,c,d;n)\) and \(t(a,b,c,d;n)\) and \((p,k)\)-parametrization of theta functions. Journal of Mathematical Analysis and Applications, 453(1), 125–143.

  33. Yao, O. X. M. (2019). Generalizations of some conjectures of Sun on the relations between \(N(a,b,c,d;n)\) and \(T(a,b,c,d;n)\). Ramanujan Journal, 48(3), 639–654.

Download references

Acknowledgements

The authors are thankful to the anonymous referee for his/her helpful comments. The first author was partially supported by Grant no. MTR/2018/000157 of Science & Engineering Research Board (SERB), DST, Government of India under the MATRICS scheme. The second author was partially supported by Council of Scientific & Industrial Research (CSIR), Government of India under CSIR-JRF scheme. The authors thank both the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirakjyoti Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sanoli Gun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, N.D., Das, H. Relations among representations of integers by certain quadratic forms. Indian J Pure Appl Math 53, 672–682 (2022). https://doi.org/10.1007/s13226-021-00158-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-021-00158-w

Keywords

Mathematics Subject Classification

Navigation