R.L. Bagley, P.J. Torvik. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984) 294-298.
MATH
Google Scholar
I. Podlubny. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus. App. Anal. 5 (2002) 367 - 386.
MathSciNet
MATH
Google Scholar
I. Podlubny. Fractional differential equations, Academic press, New York, 1999.
MATH
Google Scholar
F. Mainardi. Fractional calculus: Some basic problems in continuum and statistical mechanics, In: A. Carpinteri, F. Mainardi, Editors, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, 1997.
MATH
Google Scholar
M.D. Thomas and P.B. Bamforth, Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cem. Concr. Res.29 (4) (1999) 487-495.
Google Scholar
A. Khitab, S. Lorente, and J.P. Ollivier, Predictive model for chloride penetration through concrete. Mag. Concr. Res. 57 (9) (2005) 511-520.
Google Scholar
M.A. Firoozjaee, S.A. Yousefi. A numerical approach for fractional partial differential equations by using Ritz approximation. Appl. Math. Comput. 338 (2018) 711-721.
MathSciNet
MATH
Google Scholar
H. Dehestani, Y. Ordokhani, M. Razzaghi. Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336 (2018) 433-453.
MathSciNet
MATH
Google Scholar
Shaher Momani, Zaid Odibat. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor’s formula. J. Comput. Appl. Math. 220 (2008) 85-95.
MathSciNet
MATH
Google Scholar
U. Saeed, M. Rehman. Haar wavelet Picard method for fractional nonlinear partial differential equations. Appl.Math.Comput. 264 (2015) 310-322.
MathSciNet
MATH
Google Scholar
T. A. Biala, A. Q. M. Khaliq. Parallel algorithms for nonlinear time-space fractional parabolic PDEs. J. Comput. Phys. 375 (2018) 135-154.
MathSciNet
MATH
Google Scholar
M.M. Khader, K. M. Saad. A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos Soliton Fract. 110 (2018) 169-177.
MathSciNet
MATH
Google Scholar
Z.Odibat, S. Momani. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Model. 32 (2008) 28-39.
MATH
Google Scholar
Z. Mohamed, T. M. Elzaki. Applications of new integral transform for linear and nonlinear fractional partial differential equations. J. King Saud Univ. Sci. 2018
Google Scholar
S. Zhang, S. Hong. Variable separation method for a nonlinear time fractional partial differential equation with forcing term. J. Comput. Appl. Math. 339 (2018) 297-305.
MathSciNet
MATH
Google Scholar
A. Demir, M. A. Bayrak, E. Ozbilge. An Approximate Solution of the Time-Fractional Fisher Equation with Small Delay by Residual Power Series Method. Math. Probl. Eng. 2018 (2018) 1-8.
MathSciNet
MATH
Google Scholar
A. M. Nagy. Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method. Appl.Math.Comput. 310 (2017) 139-148.
MathSciNet
MATH
Google Scholar
A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu. Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations. Chaos Soliton Fract. 116 (2018) 220-226.
MathSciNet
MATH
Google Scholar
P. Prakash, S. Harikrishnan, M. Benchohra. Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43 (2015) 72-79.
MathSciNet
MATH
Google Scholar
R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new defnition of fractional derivative. J. Comput. Appl. Math. 264 (2014) 65-70.
MathSciNet
MATH
Google Scholar
T. Abdeljawad. On conformable fractional calculus. J. Comput. Appl. Math. 279 (2015) 57-66.
MathSciNet
MATH
Google Scholar
Q. Feng. A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation. Chinese J. Phys. 56 (2018) 2817-2828.
Google Scholar
C. Chen, Y. L. Jiang. Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75 (2018) 2978-2988.
MathSciNet
MATH
Google Scholar
K. Hosseini, R. Ansari. New exact solutions of nonlinear conformable time- fractional Boussinesq equations using the modified Kudryashov method. Wave Random Complex. 27 (2017) 628-636.
MathSciNet
Google Scholar
Abdelsalam UM. Exact travelling solutions of two coupled (2 + 1)-Dimensional Equations. J. Egyptian Math. Soc. 25 (2017) 125-128.
MathSciNet
MATH
Google Scholar
H. Thabet, S. Kendre. Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos Soliton Fract. 109 (2018) 238-245.
MathSciNet
MATH
Google Scholar
Y. Yang. Solving a Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo-Spectral Method. AM 4 (2013) 113-118.
Google Scholar
F. Mohammadi and C. Cattani. A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J. Comput. Appl. Math. 339 (2018) 306-316.
MathSciNet
MATH
Google Scholar
E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35 (2011) 5662-5672.
MathSciNet
MATH
Google Scholar
N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Soliton Fract. 73 (2015) 141-147.
MathSciNet
MATH
Google Scholar
N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. J. King Saud Univ. Sci. 28 (2016) 41-47.
Google Scholar
N.H. Sweilam, A.M. Nagy, A. A. El-Sayed. Numerical approach for solving space fractional order diffusion equations using shifted Chebyshev polynomials of the fourth kind. Turk J. Math. 40 (2016) 1283-1297.
MathSciNet
MATH
Google Scholar
M.M. Khader. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 2535-42.
MathSciNet
MATH
Google Scholar
H. Azizi, G.B. Loghmani. Numerical approximation for space fractional diffusion equations via Chebyshev finite difference method. J. Fract. Ca.l Appl. 4 (2013) 303-311.
H. Azizi, G.B. Loghmani. A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method. J. Math. Comput. Sci. 8 (2014) 226-235.
Google Scholar
A. Saadatmandia, M. Dehghan. A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62 (2011) 1135-1142.
MathSciNet
MATH
Google Scholar
X.Li, C. Xu. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 247 (2009) 2108-2131.
MathSciNet
MATH
Google Scholar
C. Piret, E. Hanert. A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 14 (2012) 71-81.
MathSciNet
MATH
Google Scholar
M.M. Khader. An efficient approximate method for solving linear fractional Klein-Gordon equation based on the generalized Laguerre polynomials. Int. J. Comput. Math. 90 (2013) 1853-1864.
MathSciNet
MATH
Google Scholar
H. C. Yaslan. Numerical solution of the conformable space-time fractional wave equation. Chinese J. Phys. 56 (2018) 2916-2925.
MathSciNet
Google Scholar
J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall, CRC, New York, NY, Boca Raton, 2003.
MATH
Google Scholar
Wazwaz AM, Gorguis A. An analytic study of Fishers equation by using Adomian decomposition method. Appl. Math. Comput. 154 (2004) 609-20.
MathSciNet
MATH
Google Scholar