Skip to main content
Log in

Existence and Stability of Riemann Solution to the Aw-Rascle Model with Friction

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

This manuscript is concerned with the Riemann problem and the stability of the Riemann solution of the Aw-Rascle (AR) model with a source term. There exists a unique Riemann solution to the AR model with friction. The problem with three-piecewiseconstant initial data is studied ulteriorly to reach the results on interactions of waves without the vacuum. Based on these results, the Riemann solution turns out to be stable for such a small perturbed initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aw, A. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader model, SIAM J. Appl. Math., 63 (2002), 259–278.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Berthelin, P. Degond, M. Delitata and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rational Mech. Anal., 187 (2008), 185–220.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Chang and L. Hsiao, The Riemann problem and interaction of waves in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 41, Longman Scientific and Technical, Harlow, UK, 1989.

    MATH  Google Scholar 

  5. C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren Math. Wiss., Springer-Verlag, Berlin, 2000.

    Book  Google Scholar 

  6. C. Daganzo, Requiem for second order fluid approximations of traffic flow, Transportaion Research Part B, 29 (1995), 277–286.

    Article  Google Scholar 

  7. D. A. E. Daw and M. Nedeljkov, Shadow waves for pressureless gas balance laws, Applied Mathematics Letters, 57 (2016), 54–59.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37 (2012), 1408–1433.

    Article  Google Scholar 

  9. L. Guo, T. Li and G. Yin, The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term, Comm. Pure Appl. Anal., 16(1) (2017), 295–309.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. J. Korchinski, Solution of a Riemann problem for a 2 × 2 sytem of conservation laws possessing no classical weak solution, Thesis, Adelphi University, 1977.

    Google Scholar 

  11. P. Lefloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in ”Nonlinear evolution equations that change type”, IMA Volumes in Mathematics and its Applications 27, Springer-Verlag, Berlin/New York, 27 (1990), 126–138.

    Google Scholar 

  12. S. B. Savage and K. Hutter, The motion of finite mass of granular material down a rough incline, J. Fluid Mech., 199 (1989), 177–215.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Serre, Systems of conservation laws, 1 and 2, Cambridge University Press, Cambridge, UK, 1999 and 2000.

    MATH  Google Scholar 

  14. S. F. Shandarin and Ya. B. Zeldovich, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Rev. Mod. Phys., 61 (1989), 185–220.

    Article  MathSciNet  Google Scholar 

  15. C. Shen, The Riemann problem for the pressureless Euler system with the Coulomb-like friction term, IMA J. appl. Math., 81 (2016), 76–99.

    MathSciNet  MATH  Google Scholar 

  16. C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96 (2016), 681–695.

    Article  MathSciNet  Google Scholar 

  17. W. Shens and T. Zhang, The Riemann problem for the transport equations in gas dynamics, Mem. Amer. Math. Soc., AMS, Providence, 137(654) (1999).

    Google Scholar 

  18. R. Smith, The Riemann problem in gas dynamics, Trans. Amer. Math. Soc., 249 (1979), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  20. M. Sun, Interactions of elementary waves for the Aw-Rascle model, SIAM J. Appl. Math., 69(6) (2009), 1542–1558.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Sun, A note on the interactions of elementary waves for the AR traffic flow model without vacuum, Acta Math. Sci., 31(B) (2011), 1503–1512.

    MathSciNet  MATH  Google Scholar 

  22. W. E. Yu, G. Rykov and G. Ya, Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Commun. Math. Phys., 177 (1996), 349–380.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Yin.

Additional information

This work is partially supported by National Natural Science Foundation of China (11461066, 11761068) and the Natural Science Foundation of Xinjiang (Grant Nos. 2017D01C053).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, G., Chen, J. Existence and Stability of Riemann Solution to the Aw-Rascle Model with Friction. Indian J Pure Appl Math 49, 671–688 (2018). https://doi.org/10.1007/s13226-018-0294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-018-0294-3

Key words

Navigation