Skip to main content
Log in

Fermionic Meixner classes, Lie algebras and quadratic Hamiltonians

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

We introduce the quadratic Fermi algebra, which is a Lie algebra, and calculate the vacuum distributions of the associated Hamiltonians. In order to emphasize the difference with the Bose case, we apply a modification of the method used in the above calculation to obtain a simple and straightforward classification of the 1-dimensional Meixner laws in terms of homogeneous quadratic expressions in the Bose creation and annihilation operators. There is a huge literature of the Meixner laws but this, purely quantum probabilistic, derivation seems to be new. Finally we briefly discuss the possible multidimensional extensions of the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi, I. Ya. Aref’eva and I. V. Volovich, Non isomorphism of the Bose and Fermi realization of sl(2,R). in preparation (2014).

    Google Scholar 

  2. L. Accardi, H.-H. Kuo and A. Stan, Moments and commutators of probability measures, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Quantum Probability Communications, 10 (2007) 591–612.

    MATH  MathSciNet  Google Scholar 

  3. L. Accardi, A. Boukas and U. Franz, Renormalized powers of quantum white noise, IDA-QP (Infinite Dimensional Anal. Quantum Probab. Related Topics), 9(1) (2006), 129–147, MR2214505, DOI: 10.1142/S0219025706002263 Preprint Volterra n. 597 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Accardi and Andreas Boukas, Higher Powers of q-Deformed White Noise, Methods of Functional Analysis and Topology, 12(3) (2006), 205–219.

    MathSciNet  Google Scholar 

  5. Luigi Accardi and Andreas Boukas, White noise calculus and stochastic calculus, in: Stochastic Analysis: Classical and Quantum, T. Hida, K. Saito (eds.) World Scientific (2005), 260-300. Proceedings International Conference on Stochastic analysis: classical and quantum, Perspectives of white noise theory, Meijo University, Nagoya, 1-5 November 2004, Preprint Volterra n. 579 (2005).

  6. L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Levy processes on real Lie algebras, Comm. Math. Phys., 228 (2002), 123–150. Preprint Volterra, N. 423 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Accardi, Y. G. Lu and I. V. Volovich, White noise approach to classical and quantum stochastic calculi, Lecture Notes of the Volterra—CIRM International School with the same title, Trento, Italy, 1999, Volterra Preprint N. 375 July (1999).

    Google Scholar 

  8. L. Accardi, M. Schurmann and W. vonWaldenfels, Quantum independent increment processes on superalgebras, Math. ZeitSchr., 198(4) (1988), 451–477. Preprint, Heidelberg, Stochastische Mathematische Modelle, January (1987).

    Article  MATH  MathSciNet  Google Scholar 

  9. F. A. Berezin, The Method of Second Quantization, Pure Appl. Phys., 24, Academic Press, New York, 1966.

  10. K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, Commu Pure Appl. Math., 4 (1951), 161–224, 5(1-56) (1952), 349-411, 6(1953), 1-72, (Collectively reissued: Interscience, New York, 1953).

    Article  MathSciNet  Google Scholar 

  11. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition Hardcover by Alan Jeffrey (Editor), Daniel Zwillinger (Editor), Academic Press (2007).

  12. B. Grigelionis, Generalized z-distributions and related stochastic processes, Lithuanian Math. J., 41 (2001), 303–319.

    Article  MathSciNet  Google Scholar 

  13. B. Grigelionis, Processes of Meixner type, Lithuanian Math. J., 39 (1999), 33–41.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Meixner, Orthogonal Polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, (Orthogonal polynomial systems with a generating function of a special form), J. London Math. Soc., 9 (1934), 6–13 (Zbl. 7, 307).

    Article  MathSciNet  Google Scholar 

  15. K. R. Parthasarathy and K. Schmidt, Positive definite kernels continuous tensor products and central limit theorems of probability theory, Springer Lecture Notes in Mathematics no. 272 (1972).

    MATH  Google Scholar 

  16. M. Schürmann, White noise on bialgebras, Springer LNM 1544 (1993).

    MATH  Google Scholar 

  17. P. Śniady, Quadratic bosonic and free white noises, Commun. Math. Phys., 211(3) (2000), 615–628, Preprint (1999).

    Article  MATH  Google Scholar 

  18. Gabriela Popa and Aurel I. Stan, Two-dimensional Meixner random vectors and their semi-quantum operators, preprint November 2014.

  19. J. Schwinger, U.S. Atomic Energy Commission Report NYO-3071, 1952 or D. Mattis, The Theory of Magnetism, Harper and Row, (1982).

  20. R. Anishetty, M. Mathur and I. Raychowdhury, Irreducible SU(3) Schwinger Bosons, arXiv:0901.0644.–A Wolfram Web Resource. http://mathworld.wolfram.com/ GammaDistribution.html.

  21. http://mathworld.wolfram.com/NegativeBinomialDistribution.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

Dedicated to Prof. Kalyan B. Sinha on occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accardi, L., Aref’eva, I.Y. & Volovich, I.V. Fermionic Meixner classes, Lie algebras and quadratic Hamiltonians. Indian J Pure Appl Math 46, 517–538 (2015). https://doi.org/10.1007/s13226-015-0150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-015-0150-7

Keywords

Navigation