Skip to main content

On the greatest prime factor of ab + 1

Abstract

We improve some results on the size of the greatest prime factor of the integers of the form ab + 1 where a and b belong to some general given finite sequences A and B with rather large density.

This is a preview of subscription content, access via your institution.

References

  1. E. Bombieri, On the large sieve, Mathematika 12: 201–225, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  2. E Bombieri, Le Grand Crible Dans La Théorie Analytique Des Nombres (Seconde édition). Astérisque, vol. 18, S.M.F., 1987.

  3. E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156: 203–251, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Annalen 277: 361–393, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. III, J. of the Amer. Math. Soc. 2: 215–224, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. J-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Inv. math. 70: 219–288, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. P.D.T.A. Elliott and H. Halberstam, A conjecture in prime number theory, Symp. Math. 4: 59–72, 1968–69.

    Google Scholar 

  8. K. Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168: 367–433, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  9. É. Fouvry, Répartition des suites dans les progressions arithmétiques. Résultats du type Bombieri-Vinogradov avec exposant supérieur à 1/2, Thèse de l’Université de Bordeaux I, 1981.

    Google Scholar 

  10. É. Fouvry, Répartition des suites dans les progressions arithmétiques, Acta Arith. 41: 359–382, 1982.

    MATH  MathSciNet  Google Scholar 

  11. É. Fouvry, Autour du théorème de Bombieri-Vinogradov, Acta Math. 152: 219–244, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  12. É. Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math., 357: 51–76, 1985.

    MATH  MathSciNet  Google Scholar 

  13. É. Fouvry, Autour du Théorème de Bombieri-Vinogradov.II, Ann. Scient. École Norm. Sup. (4) 20: 617–640, 1987.

    MATH  MathSciNet  Google Scholar 

  14. É. Fouvry and H. Iwaniec, On a theorem of Bombieri-Vinogradov type, Mathematika 27: 135–152, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  15. É. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith. 42: 197–218, 1983.

    MATH  MathSciNet  Google Scholar 

  16. R.R. Hall and G. Tenenbaum, Divisors. Cambridge University Press, vol. 90, Cambridge, 1988.

  17. K.-H. Indlekofer and N.M. Timofeev, Divisors of shifted primes, Pub. Math. Debrecen, 60: 307–345, 2002.

    MATH  MathSciNet  Google Scholar 

  18. H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications, 53, AMS, 2004.

  19. D. Koukoulopoulos, Divisors of shifted primes, Int. Math. Res. Not. IMRN 2010, no. 24, 4585–4627.

    MathSciNet  Google Scholar 

  20. Ju.V. Linnik, The Dispersion Method In Binary Additive Problems, Translation of Mathematical Monographs, 4, AMS, 1963.

  21. K. Matomäki, On the greatest prime factor of ab + 1, Acta Math. Hungar. 124: 115–123, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62: 257–269, 1992.

    MATH  MathSciNet  Google Scholar 

  23. M. Nair and G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math. 180: 119–144, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Sárközy and C.L. Stewart, On prime factors of integers of the form ab+1, Pub. Math. Debrecen, 56: 559–573, 2000.

    MATH  Google Scholar 

  25. P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313: 161–170, 1980.

    MATH  MathSciNet  Google Scholar 

  26. C.L. Stewart, On the greatest prime factor of integers of the form ab + 1 Period. Math. Hungar, 43: 81–91, 2001.

    Article  MATH  Google Scholar 

  27. C.L. Stewart, On prime factors of integers which are sums or shifted products, Anatomy of integers, (Ed. J.-M. de Koninck, A. Granville, F. Luca), CRM Proceedings & Lecture Notes A.M.S., vol. 46: 275–287, 2008.

    Google Scholar 

  28. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés, S.M.F., vol. 1, 1995.

  29. A.I. Vinogradov, On the density hypothesis for Dirichlet L-series, Izv. Akad. Nauk. SSSR ser. Mat. 29: 903–934, 1965; correction ibid. 30, 719-720, 1966.

    MATH  MathSciNet  Google Scholar 

  30. Y. Zhang, Bounded gaps between primes. Ann. of Math. (2) 179, no. 3, 1121–1174, 2014.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne Fouvry.

Additional information

The author benefited from the financial support of Institut Universitaire de France.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fouvry, É. On the greatest prime factor of ab + 1. Indian J Pure Appl Math 45, 583–632 (2014). https://doi.org/10.1007/s13226-014-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-014-0082-7

Key words

  • Greatest prime factor
  • primes in arithmetic progressions