Skip to main content
Log in

Symmetry group analysis and exact solutions of isentropic magnetogasdynamics

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we obtain exact solutions to the nonlinear system of partial differential equations (PDEs), describing the one dimensional unsteady simple flow of an isentropic, inviscid and perfectly conducting compressible fluid, subjected to a transverse magnetic field. Lie group of point transformations are used for constructing similarity variables which lead the governing system of PDEs to system of ordinary differential equations (ODEs); in some cases, it is possible to solve these equations exactly. A particular solution to the governing system, which exhibits space-time dependence, is used to study the evolutionary behavior of weak discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsiannikkov, Group analysis of differential equations, Academic, New York (1982).

    Google Scholar 

  2. P. J. Olver, Application of Lie groups to differential equations, Springer, New York (1986).

    Book  Google Scholar 

  3. G. W. Bluman and S. Kumei, Symmetries and differantial equations, Academic, New York (1989).

    Book  Google Scholar 

  4. A. Donato and F. Oliveri, Reduction to autonomous form by group analysis and exact solutions of axisymmetric MHD equations, Math. Comput. Modelling, 18(10) (1993), 83–90.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Oliveri and M. P. Speciale, Exact solutions to the unsteady equations of perfect gases through Lie group analysis and substitution principles, Internat. J. Non-Linear Mech., 37(2) (2002), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Oliveri and M. P. Speciale, Exact solutions to the ideal magnetogasdynamics equations through Lie group analysis and substitution principles, J. Phys. A, 38(40) (2005), 8803–8820.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Sahin, N. Antar and T. Ozer, Lie group analysis of gravity currents, Nonlinear Anal. Real World Appl., 11(2) (2010), 978–994.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Raja Sekhar and V. D. Sharma, Similarity solutions for three dimensional Euler equations using Lie group analysis, Appl. Math. Comput., 196(1) (2008), 147–157.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. D. Sharma and R. Radha, Exact solutions of Euler equations of ideal gasdynamics via Lie group analysis, Z. Angew. Math. Phys., 59(6) (2008), 1029–1038.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Pandey, R. Radha and V. D. Sharma, Symmetry analysis and exact solutions of magnetogasdynamic equations, Quart. J. Mech. Appl. Math., 61(3) (2008), 291–310.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Jena, Lie group transformations for self-similar shocks in a gas with dust particles, Math. Methods Appl. Sci., 32(16) (2009), 2035–2049.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Rajasekhar and V. D. Sharma, Evolution of weak discontinuities in shallow water equations, Appl. Math. Lett., 23(3) (2010), 327–330.

    Article  MathSciNet  Google Scholar 

  13. W. F. Ames and A. Donato, On the evolution of weak discontinuities in a state characterized by invariant solutions, Internat. J. Non-Linear Mech., 23(2) (1988), 167–174.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. P. Singh, A. Husain and M. Singh, A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics, Meccanica 46 (2) (2011), 437–445.

    Google Scholar 

  15. V. D. Sharma, Quasilinear hyperbolic systems, compressible flows, and waves, CRC Press, Boca Raton, FL, (2010).

    Book  MATH  Google Scholar 

  16. T. Raja Sekhar and V. D. Sharma, Solution to the Riemann problem in a one-dimensional magnetogasdynamic flow, Int. J. Comput. Math., 89(2) (2012), 200–216.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Raja Sekhar and V. D. Sharma, Riemann problem and elementary wave interactions in isentropic magnetogasdynamics, Nonlinear Anal. Real World Appl., 11(2) (2010), 619–636.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. F. Clarke, Small amplitude gasdynamic disturbances in an exploding atmosphere, J. Fluid Mech., 89(2) (1978), 343–355.

    Article  MATH  Google Scholar 

  19. G. J. Pert, Self-similar flow with uniform velocity gradient and their use in modelling the free expansion of polytropic gases, J. Fluid Mech., 100(2) (1980), 257–277.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. D. Sharma, R. Ram and P. L. Sachdev, Uniformly valid analytical solution to the problem of a decaying shock wave, J. Fluid Mech., 185 (1987), 153–170.

    Article  MATH  Google Scholar 

  21. G. Boillat and T. Ruggeri, On evolution law of weak discotinuities for hyberbolic quasilinear systems, Wave Motion 1(2) (1979), 149–152.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Raja Sekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bira, B., Sekhar, T.R. Symmetry group analysis and exact solutions of isentropic magnetogasdynamics. Indian J Pure Appl Math 44, 153–165 (2013). https://doi.org/10.1007/s13226-013-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-013-0008-9

Key words

Navigation