Skip to main content
Log in

Several identities in the Catalan triangle

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by B n, p = \( \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) \). Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving B n, p and the Fibonacci numbers F n are given. As special cases, some new relationships between the well-known Catalan numbers C n and the Fibonacci numbers are obtained, for example:

$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$

and

$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aigner, Catalan-like numbers and determinants, J. Comb. Theory, Ser. A, 87 (1999), 33–51.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discrete Math., 204 (1999), 73–112.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. W. Gould, Combinatorial Identities, Morgantown, W. Va. (1972).

  4. H. W. Gould, Research Bibliography of Two Special Sequences, Rev.ed., Combin. Research Institute, Morgantown, West virginia, (1977).

    Google Scholar 

  5. J. M. Gutierrez, M. A. Hernandez, P. J. Miana and N. Romero, New identities in the Catalan triangle, J. Math. Anal. Appl., 341 (2008), 52–61.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Harary and R. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc., 17 (1970), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Hilton and J. Pedersen, Catalan numbers, their generalization and uses, Math. Intelligencer, 13 (1991), 64–75.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. E. Mays and J. Wojciechowski, A determinant property of Catalan numbers, Discrete Math., 211 (2000), 125–133.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Pan and Z.W. Sun, A combinatorial identity with application to Catalan numbers, Discrete Math., 306 (2006), 1921–1940.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83–90.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Stanley, Enumerative Combinatorics, vol. II, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge, (1999).

    Google Scholar 

  12. Z. Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math., 154(11) (2006), 1622–1632.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z. Z. Zhang and Y. L. Zhang, The Lucas matrix and some combinatorial identities, Indian J. pure appl. Math., 38(5) (2007), 457–465.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Pang, B. Several identities in the Catalan triangle. Indian J Pure Appl Math 41, 363–378 (2010). https://doi.org/10.1007/s13226-010-0022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-010-0022-0

Key words

Navigation