Skip to main content
Log in

Class-wide genomic tendency throughout specific extremes in black fungi

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The classes Dothideomycetes and Eurotiomycetes include constitutively melanized fungi adapted to extreme conditions and they are widely distributed in diverse hostile habitats worldwide. Yet, despite the growing interest in these fungi, there is a considerable gap of knowledge on their functionality. Their genomic analysis is still in its infancy and the possibility to understand their adaptive strategies and exploit their potentialities in bioremediation is very limited. Here, we supply a genome catalog of 118 black fungi, encompassing different ecologies, phylogenies and lifestyles, as a first example of a comparative genomic study at high level of diversity. Results indicate that, as a rule, Dothideomycetes show more variable genome size and that larger genomes are associated with harshest conditions; low temperature tolerance and DNA repair capacity are overrepresented in their genomes. In Eurotiomycetes high temperature tolerance and capacity to metabolize hydrocarbons are more frequently present and these abilities are positively correlated with the human presence. The genomic features are consistent with the prevalent ecologies in the two classes. Indeed, Dothideomycetes are more common in cold and dry environments with high capacity for DNA repair being consistent with the normally highly UV-impacted conditions in their habitats; in contrast, Eurotiomycetes spread mainly in hot human-impacted sites with industrial pollution. Mean annual temperature and isothermality are positively correlated with tolerance to high temperatures in Dothideomycetes, suggesting that, despite their preference for the cold, they are potentially equipped to survive even when temperatures rise due to the global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The genome assemblies and annotation datasets are available on Zenodo repository (https://doi.org/10.5281/zenodo.7764743, https://doi.org/https://doi.org/10.5281/zenodo.7764743).

References

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6(June):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron NC, Pagnocca FC, Otsuka AA, Prenafeta-Boldú FX, Vicente VA, de Angelis DA (2021) Black Fungi and hydrocarbons: an environmental survey for alkylbenzene assimilation. Microorganisms 9(5):1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Tafer H, Tesei D, Sterflinger K (2015) From glacier to sauna: RNA-Seq of the human pathogen black fungus exophiala dermatitidis under varying temperature conditions exhibits common and novel fungal response. PLoS ONE 10(6):e0127103

    Article  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Poyntner C, Rudavsky T, Prenafeta-Boldú FX, De Hoog S, Tafer H, Sterflinger K (2016) Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol J 33(3–4):308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Tafer H, Kustor C, Poyntner C, Lopandic K, Sterflinger K (2017) Genomic and transcriptomic analysis of the toluene degrading black yeast cladophialophora immunda. Sci Rep 7(1):11436

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. https://doi.org/10.1038/nature01521

    Article  PubMed  Google Scholar 

  • Brůna T, Lomsadze A, Borodovsky M (2020) GeneMark-EP: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genomics Bioinform. https://doi.org/10.1093/nargab/lqaa026

    Article  Google Scholar 

  • Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner. LBNL-7065E. Lawrence Berkeley National Lab (LBNL), Berkeley, CA

  • Chen Z, Martinez DA, Gujja S, Sykes SM et al (2014) Comparative genomic and transcriptomic analysis of Wangiella dermatitidis, a major cause of phaeohyphomycosis and a model black yeast human pathogen. G3 Bethesda 4(4):561–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleine C, Selbmann L (2021) Black Fungi inhabiting rock surfaces. In: Life at rock surfaces, pp. 57–86. De Gruyter

  • Coleine C, Selbmann L, Masonjones S, Onofri S, Zucconi L, Stajich JE (2019) Draft genome sequence of an Antarctic isolate of the black yeast fungus Exophiala Mesophila. Microbiol Resour Announc. https://doi.org/10.1128/mra.00142-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleine C, Selbmann L, Singh BK, Delgado-Baquerizo M (2022) The poly-extreme tolerant black yeasts are prevalent under high ultraviolet light and climatic seasonality across soils of global biomes. Environ Microbiol 24(4):1988–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11(6):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE. https://doi.org/10.1371/journal.pone.0000457

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, Singh BK, Bissett A (2018) Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99(3):583–596

    Article  PubMed  Google Scholar 

  • Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167(1–3):295–304

    Article  CAS  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 3(November):390

    PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Turk M, Zajc J, Gunde-Cimerman N (2019) Fifty aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist. Environ Microbiol 21(10):3638–3652

    Article  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Zalar P, Gunde-Cimerman N (2022) No need for speed: slow development of fungi in extreme environments. Fungal Biol Rev 39(March):1–14

    Article  Google Scholar 

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168

    Article  CAS  PubMed  Google Scholar 

  • Gueidan C, Ruibal Villaseñor C, de Hoog GS et al (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, de Constantino Ruibal GS, Hoog, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle triassic. Fungal Biol 115(10):987–996

    Article  PubMed  Google Scholar 

  • Gümral R, Özhak-Baysan B, Tümgör A, Saraçlı MA, Yıldıran ŞT, Ilkit M, Zupančič J et al (2016) Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Divers 76(1):1–9

    Article  Google Scholar 

  • Gunde-Cimermana N, Zalarb P, de Hoogc S, Plemenitasd A (2000) Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240

    CAS  PubMed  Google Scholar 

  • Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, Owen White C, Buell R, Wortman JR (2008) Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biol 9(1):R7

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47(D1):D309–D314

    Article  CAS  PubMed  Google Scholar 

  • Isola D, Laura Selbmann G, de Hoog S, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175(5–6):369–379

    Article  PubMed  Google Scholar 

  • Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L (2016) Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers 76(1):75–96

    Article  Google Scholar 

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  PubMed  Google Scholar 

  • Korf I (2004) Gene finding in novel genomes. BMC Bioinform 5(May):59

    Article  Google Scholar 

  • Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS ONE. https://doi.org/10.1371/journal.pone.0071328

    Article  PubMed  PubMed Central  Google Scholar 

  • Lidzbarsky GA, Shkolnik T, Nevo E (2009) Adaptive response to DNA-damaging agents in natural saccharomyces cerevisiae populations from ‘evolution canyon’, Mt. Carmel, Israel. PLoS ONE 4(6):e5914

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YH, Huang XW, Liu HF, Xi LY, Cooper CR (2019) Increased virulence of albino mutant of Fonsecaea monophora in Galleria mellonella. Med Mycol 57(8):1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):W54-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the earth’s surface. J Photochem Photobiol B 46(1–3):5–19

    Article  CAS  PubMed  Google Scholar 

  • Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20(16):2878–2879

    Article  CAS  PubMed  Google Scholar 

  • Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM (2021) BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 38(10):4647–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos T, de Hoog GS, de Boer AG, de Crom I, Haase G (2002) High prevalence of the neurotrope exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 45(9–10):373–377

    Article  CAS  PubMed  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. https://doi.org/10.1128/jb.178.3.633-637.1996

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer VE, Voglmayr H (2009) Mycelial carton galleries of Azteca brevis (Formicidae) as a multi-species network. Proc Biol Sci 276(1671):3265–3273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno LF, Ahmed AOA, Brankovics B et al (2018) Genomic understanding of an infectious brain disease from the desert. G3 8:909–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno LF, Mayer V, Voglmayr H, Rumsaïs Blatrix J, Stielow B, Teixeira MM, Vicente VA, de Hoog S (2019) Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycol Prog 18(4):541–552

    Article  Google Scholar 

  • Muggia L, Coleine C, De Carolis R, Cometto A, Selbmann L (2021) Antarctolichenia Onofrii Gen. Nov. Sp. Nov. from Antarctic endolithic communities untangles the evolution of rock-inhabiting and lichenized fungi in arthoniomycetes. J Fungi. https://doi.org/10.3390/jof7110935

  • Onofri S, de Vera J-P, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de la Torre R, Horneck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the international space station. Astrobiology 15(12):1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera J-P (2019) Survival, DNA, and ultrastructural integrity of a cryptoendolithic antarctic fungus in mars and lunar rock analogs exposed outside the international space station. Astrobiology 19(2):170–182

    Article  CAS  PubMed  Google Scholar 

  • Palmer JM, Stajich J (2020) Funannotate v1.8.1: eukaryotic genome annotation. https://doi.org/10.5281/zenodo.4054262.

  • Palmer JM, Stajich JE (2022) Automatic assembly for the fungi (AAFTF): genome assembly pipeline. https://doi.org/10.5281/zenodo.6326242

  • Prenafeta-Boldú FX, de Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: McGenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Springer, Cham, pp 1–36

    Google Scholar 

  • Quan Y, Muggia L, Moreno LF, Wang M, Al-Hatmi AMS, da Silva N, Menezes DS et al (2020) A re-evaluation of the chaetothyriales using criteria of comparative biology. Fungal Diversity 103(1):47–85

    Article  Google Scholar 

  • Quan Y, Ahmed SA, Menezes N, da Silva AMS, Al-Hatmi VE, Mayer SD, Yingqian Kang G, de Hoog S, Shi D (2021) Novel black yeast-like species in chaetothyriales with ant-associated life styles. Fungal Biol. https://doi.org/10.1016/j.funbio.2020.11.006

    Article  PubMed  Google Scholar 

  • Quan Y, Menezes N, da Silva B, Favoreto J, de Souza Lima, Sybren de Hoog, Vania Aparecida Vicente, Veronika Mayer, Yingqian Kang, and Dongmei Shi. (2022) Black fungi and ants: a genomic comparison of species inhabiting carton nests versus domatia. IMA Fungus 13(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KL, Mostaghim A, Cuomo CA, Soto CM, Lebedev N, Bailey RF, Wang Z (2012) Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS ONE 7(11):e48674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in mallorca. Mycol Prog 4(1):23–38

    Article  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L et al (2009) Phylogeny of rock-inhabiting fungi related to dothideomycetes. Stud Mycol 64:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruibal C, Selbmann L, Avci S, Martin-Sanchez PM, Gorbushina AA (2018) Roof-inhabiting cousins of rock-inhabiting fungi: novel melanized microcolonial fungal species from photocatalytically reactive subaerial surfaces. Life. https://doi.org/10.3390/life8030030

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Konrad H et al (2008) Specificity and transmission mosaic of ant nest-wall fungi. Proc Natl Acad Sci USA 105(3):940–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115(10):937–944

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2014) Mountain tips as reservoirs for new rock-fungal entities: saxomyces Gen. Nov. and four new species from the alps. Fungal Divers 65(1):167–182

    Article  Google Scholar 

  • Selbmann L, Zucconi L, Isola D, Onofri S (2015) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61(3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Benkő Z, Coleine C, de Hoog S, Donati C, Druzhinina I, Emri T et al (2020) Shed light in the DaRk LineagES of the fungal tree of life-STRES. Life. https://doi.org/10.3390/life10120362

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldú FX, Sybren De Hoog G (2011) Exophiala Sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol 115(10):1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis Thaliana. Proc Natl Acad Sci USA 99(21):13627–13632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinform 6(February):31

    Article  Google Scholar 

  • Smit AFA 2004 Repeat-masker open-3.0. http://www.repeatmasker.org. https://ci.nii.ac.jp/naid/10029514778/

  • Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74(4):271–281

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev. https://doi.org/10.1016/j.fbr.2010.03.003

    Article  Google Scholar 

  • Teixeira MM, Moreno LF, Stielow BJ, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A et al (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol. https://doi.org/10.1016/j.simyco.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesei D (2022) Black fungi research: out-of-this-world implications. Encyclopedia 2(1):212–229

    Article  Google Scholar 

  • Turnbull JD, Leslie SJ, Robinson SA (2009) Desiccation protects two antarctic mosses from ultraviolet-B induced DNA damage. Funct Plant Biol 36(3):214–221

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr H, Mayer V, Maschwitz U et al (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115(10):1077–1091

    Article  PubMed  Google Scholar 

  • Zhao J, Jingsi Zeng G, de Hoog S, Attili-Angelis D, Prenafeta-Boldú FX (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60(1):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.C. and L.S. wish to thank the Italian National Antarctic Research Program for funding sampling campaigns and research activities in Italy in the frame of PNRA projects. The Italian Antarctic National Museum (MNA) is kindly acknowledged for financial support to the Mycological Section of the MNA and for providing fungal specimens used in this study stored in the Culture Collection of Antarctic fungi (MNA-CCFEE), University of Tuscia, Italy.

Funding

C.C. is supported by the European Commission under the Marie Sklodowska-Curie Grant Agreement No. 702057 (DRYLIFE). M.D-B. is supported by a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00), and a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014–2020 Objetivo temático '01 – Refuerzo de la investigación, el desarrollo tecnológico y la innovación') associated with the research project P20_00879 (ANDABIOMA). N.S. receives funding from the ERC (ERC-STG project MetaPG-716575 and ERC-CoG microTOUCH-101045015). J.E.S. is a CIFAR fellow in the Fungal Kingdom: Threats and Opportunities program. T.K. and J.E.S. were partially supported by NIH NIAID R01-GM108492. Data analyses performed at the High-Performance Computing Cluster at the University of California Riverside in the Institute of Integrative Genome Biology were supported by NSF grant DBI-1429826 and NIH grant S10-OD016290.

Author information

Authors and Affiliations

Authors

Contributions

Claudia Coleine, Sybren de Hoog, and Laura Selbmann conceived the study. Claudia Coleine, Nicola Segata, Jason E. Stajich e Claudio Donati produced the sequencing data. Tania Kurbessoian, Giulia Calia, Jason E. Stajich, Alessandro Cestaro, and Claudia Coleine assembled and annotated genomes. Manuel Delgado-Baquerizo has provided environmental metadata. Statistical analyses and environmental modeling were done by Claudia Coleine. The manuscript was written by Claudia Coleine, Sybren de Hoog, and Laura Selbmann with contributions from all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Claudia Coleine, Sybren de Hoog or Laura Selbmann.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Ishara Manawasinghe.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleine, C., Kurbessoian, T., Calia, G. et al. Class-wide genomic tendency throughout specific extremes in black fungi. Fungal Diversity 125, 121–138 (2024). https://doi.org/10.1007/s13225-024-00533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-024-00533-y

Keywords

Navigation